RASHTRASANT TUKDOJI MAHARAJ NAGPUR UNIVERSITY, NAGPUR FACULTY OF SCIENCE & TECHNOLOGY SCHEME OF EXAMINATION & EVALUATION B. TECH CIVIL ENGINEERING (CHOICE BASED CREDIT SYSTEM) SEMESTER: FIFTH

Sr.				rkloac Hours			С	redit				Marks			Minimum passing marks	
No	Subject Code	Subject		T/	Р		т	Р	Total	The	ory	Prac	ctical	Tot	Theory	Practical
				Α	F	L	•	Г	TOtal	Int	Uni	Int	Uni	al	meory	Flactical
1	BTCVE501T	Hydraulic Engineering	3	0	0	3	0	0	3	30	70			100	45	
2	BTCVE501P	Hydraulic Engineering (Practical)	0	0	2	0	0	1	1			25	25	50		25
3	BTCVE502T	Reinforced Cement Concrete	3	1	0	3	1	0	4	30	70			100	45	
5	BICVE3021	(RCC) designs	5	1	0	5	I	0	4	30	70			100	45	
4	BTCVE503T	Civil Engineering Materials,	3	0	0	2	0	0	2	30	70			100	45	
4	BICVESUSI	Testing & Evaluation	3	0	0	3	0	0	3	30	70			100	45	
		Civil Engineering Materials,														
5	BTCVE503P	Testing & Evaluation	0	0	2	0	0	1	1			25	25	50		25
		(Practical)														
6	BTCVE504T	Professional Practice, Law &	3	0	0	3	0	0	3	30	70			100	45	
0	DIC VE3041	Ethics	С	0	0	З	0	0	5	50	70			100	45	
7	BTCVE505T	Elective-I	3	0	0	3	0	0	3	30	70			100	45	
8	BTCVE506T	Elective-II	3	0	0	3	0	0	3	30	70			100	45	
9	BTCVE507P	Industrial Training (Already done in summer vacation after 4 th sem) &	0	0	2	0	0	1	1			50	50	100		50
5	DIC VESU/F	CA Professional Skill Training (Software Applications in Civil Engineering)	U	U	2	U	U	1				50	50	100		00
10	BTCVE508AU	Organizational Behavior	2	0	0	0	0	0	0			50	Audit	50		
		TOTAL	20	1	6	18	1	3	22	180	420	150	100	850		

• L- Lecture , P-Practical, T- Tutorial , A- Activity (Half Credit per Hour)

(Dr. A.N. Dashade) Bas Member

(Dr. Avinash N Shrikhande,) BOS (Gvil Engg) chairman

Sem:V	Total Hours Distribution per week								
Total Credit: 03	Lecture (L): 3 Hrs	Tutorial/Activity (T/A):0 Hrs.Practical (P):0 Hrs.							
Subject Code	BTCVE501T	Name of Subject: Hydraulics Engineering							
	Examination Scheme								
Intern	Internal Marks:		Minimum Passing		Examination				
			Marks	S:	Duration:				
30	Marks								
(15marks for sessi	onal Examination)	70 Marks	45 Marks		3 Hours				
(15 Marks fo	or Activity based)								

Cou	rse Objective
1	To know the boundary layer theory and concept of drag and lift
2	To understand the various losses occurring in pipe flow, various phenomenon occurring in
	this case
3	To compute uniform flow through open channel and understand the concept of specific
	energy
4	To analyse the gradual varied flow and hydraulic jump concept
5	To understand the design principle of various hydraulic machines likes turbines and pumps

Cour	se Outcome
After	completion of syllabus student able to
1	Understand the concepts related to boundary layer theory and determination of drag and lift forces
2	Apply the knowledge of theories and equations of pipe flow in analyzing and designing the pipe network systems and to discuss effects of water hammer pressures.
3	Use the concepts of uniform and critical flow through open channels, design of efficient channel sections and application of specific energy concept.
4	Understand gradually varied flow analysis and its computation, and its application in open channel flow.
5	Understand and apply basics principles related to turbines & Pumps in water Resources planning

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO
BECVE501T CO1	3	3	3			2						
BECVE501T CO2	3	3	3		2	2						
BECVE501T CO3	3	3	3		2	2						
BECVE501T CO4	3	3	3	3	2	2						
BECVE501T CO5	3	3	3	3	2	2	1	1				

1 Low 2 Medium

3 High

Unit No.1			
Real Fluid Flow:	Allo of Hou	tment rs	Mapped with CO Number
	L	T/A	СО
Viscous Flow: Reynold's experiment, viscous flow through a circular	02		1
pipe, velocity and shear stress distribution, Hazen poisuillee equation			
Boundary layer concept: Nominal thickness, displacement thickness,	03		1
momentumthickness of the boundary layer: Boundary layer along a thin			
plate and its characteristics; Laminar boundary layer; turbulent			
boundary layer; laminar sub-layer: separation of boundary layer on			
plane and curved surfaces.			
Real, Incompressible Fluid Flow Around Immersed Bodies:	03		1
General definition of drag and lift; flowpast plates, cylinders and			
spheres; drag on sphere; drag on sphere, cylinder and flat plate			
	08		
Unit No.2			
	Allo	tment	Mapped
Flow through Pipes:	of		with CC
	Hou		Number
	L	T/A	CO 2
Hydraulically smooth and rough pipes: Frictional resistance to flow of	07		2
fluid in smooth and rough pipes; Moody's chart; Darcy-Weisbach &			
Hazen-William's equation for frictional head loss; Hydraulic gradient			

and energy gradient: Pipes in series and parallel; Branched pipes;			
Siphon; transmission of power through pipes; Hardy-Cross methods of			
pipe networks; Water-hammer, pressure head due to sudden closure of			
valve.			
	07		
Unit No.3			
	Allo	tment	Mapped
	of		with CO
Uniform Flow Through Open Channels	Hou	rs	Number
	L	T/A	СО
(A)General: Types of channel and their geometrical properties;	03		3
Types of flow in open channel.			
(B) Uniform Flow: Chezy's and Manning's equations;	03		3
Hydraulically most efficient rectangular, triangular and			
trapezoidal sections; Computations of normal depth of flow,			
conveyance of channel, section factor for uniform flow, normal			
slope and normal discharge.			
(C) Critical Flow: Specific energy and its diagram; alternate depths;	02		3
Computations of critical depth, section factor for critical flow,			
critical slope; normal, critical slope, Specific force and its			
diagram; Conditions of critical flow.			
	08		
Unit No.4			
	Allo	tment	Mapped
Non Uniform Flow through Open Channel	of		with CO
	Hou		Number
(A) Gradually Varied Flow: Dynamic equation for GVF;	L 02	T/A	CO 4
	02		
Classification and characteristics of surface profiles; direct Step			
method of computing profile length.	02		
(B) Rapidly Varied Flow: Definition of hydraulic jump; Equation	03		4
of hydraulic jump in horizontal, rectangular channel; Length &			
height of jump; Energy loss in jump classifications of jump			

Concept of Impact of Jet			
Force exerted on stationary and moving plate and curved	02		4
surface, concept of velocity triangles			
	07		
Unit No.5			
	Allot	ment	Mapped
Fluid Machinery	of		with CC
Fiulu Ivrachinery	07Allotm of HoursL020203	rs	Number
	L	T/A	СО
(A) Turbines: Definition: Gross and net heads; different	02		5
efficiencies; Classification of turbines; component parts and			
working principles; selection of turbines on the basis of head			
and specific speed.			
(B) Reciprocating Pumps: Components parts, working principle,	02		5
Work done of single & double acting pumps; Negative slip, Air			
vessels-Working principle and necessity, indicator diagram			
(C) Centrifugal Pump: Component parts; working principle; Static	03		5
and manometric heads; different efficiencies; Priming &			
priming devices, Specific speed; Theoretical aspects of			
multistage pumps; Trouble & remedies; operating			
characteristics curves.			
	07		

		I	References					
Applicable	Name of	Name of	Name of	Edition		Category		
for Unit	Book	Author	Publisher		Text	Research	Reference	
No.	DOOK		1 ublisher		Book	paper	book	
1 and 5	Fluid	P.N.Modi and	Standard	21 st	Yes			
	Mechanics	S.M. Seth	Book	2017				
	and		House	_011				
	Hydraulic		Delhi					
	Machines							
All	Fluid	A.K.Jain	Khanna	9 th	Yes			
	Mechanics		Publishers	2006				
			Nai Sarak	2000				
			New					
			Delhi.					

2 to 5	Fluid	R.K.Rajput	S.Chand	6 th	Yes	
	Mechanics		&	2015		
			Company			
			Pvt(L),			
			New			
			Delhi			
	Hydraulics,	S.Ramamrutham	Dhanpat	6 th	Yes	
	Fluid		Rai	1998		
	Mechanics		Publishing	1770		
	and		Co., New			
	Hydraulic		Delhi			
	Machine					
	Flow in	K. Subramanya	Tata	2 nd		Yes
	open		McGraw	1997		
	channels		Hills	1///		
			Publishing			
			Company			
			Ltd, New			
			Delhi			

(Dr. A.N. Dalhade) Bos Member

(Dr. Avinash N Shrikhande,) BOS (Gvif Engg) chairman

RASHTRASANT TUKADOJI MAHARAJ NAGPUR UNIVERSITY, NAGPUR FACULTY OF SCIENCE & TECHNOLOGY

B. TECH CIVIL ENGINEERING (CHOICE BASED CREDIT SYSTEM)

Sem:V	Two Hours Distribution per week								
Total Credit: 1	Practical (P): 02 Hrs	cactical (P): 02 Hrs.							
Subject Code	BTCVE501(P)	BTCVE501(P) Name of Subject: Hydraulics Engineering(P)							
	Examination Scheme								
Internal Marks:	University Marks:	Minimum Passing	Examination Duration:						
		Marks:							
25 Marks	25 Marks	25 Marks							

List of Experiments- (Minimum 8 experiments should be performed)

- 1. Determination of Frictional factor of a pipe line
- 2. Determination of minor losses through a pipe system
- 3. Determination of critical slope of an open channel
- 4. Study on Main characteristics of a centrifugal pump
- 5. Study on operating characteristics of a reciprocating pump
- 6. Study on operating characteristics of a centrifugal pump
- 7. Study on main characteristics of reciprocating pump
- 8. Analysis of Hydraulic jump in open channel
- 9. Determination of coefficient of impact of jet
- 10. Study of characteristics of a Pelton wheel
- 11. Study of characteristics of a Francis Turbine
- 12. Study of Reynolds's experiment
- 13. Determination Chesy's and Manning constants
- 14. Analysis of a Water Distribution network by Hardy cross method

Censes G. Ronde

10000 (Dr. A.N. Dashade)

(Dr. Avinash N Shrikhande,) BOS (Gvil Engg) chairman

Sem: V	Total	Total Hours Distribution per week 3-1-0								
Total Credit:04	Lecture (L):03 Hrs	Tutorial/Activ	ity (T/A): 01 Hrs.	Practical (P): 00 Hrs.						
Subject Code	BTCVE502T	TCVE502T Name of Subject: Reinforced Cement Concrete Designs								
Examination Scheme										
Internal Marks:		University	Minimum Pas	sing	Examir	nation				
		Marks:	Marks:	_	Duratio	on:				
(15 Marks for sess	0 Marks sional examination) Activity based)	70 Marks	45 Marks		4 Hr					

Course Objective				
1	To understand phenomenon's of design concepts and learning various codes related to RCC design.			
2	To understand the structural behavior of steel and concrete.			
3	To apply conventional methods for design structural components of building.			

Course	Course Outcome					
After co	mpletion of syllabus student able to					
1	Understand the fundamental concepts of working stress method as per IS 456- 2000 and Pre-stressed concrete method.					
2	Apply the fundamental concepts of limit state method on limit state of serviceability					
3	Analyze the fundamental concepts of limit state of collapse in flexure, Shear & Bond as per IS 456-2000.					
4	Evaluate the fundamental concepts of limit state of collapse in compression and design of footing as per IS 456-2000.					
5	Design of Simply supported Two-way slab					

CO/PO	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Subject Code &CO NO.												
CO1	3	3	3	-	-	-	-	-	-	-	-	3
CO2	3	3	3	-	-	-	-	-	-	-	-	3
CO3	3	3	3	-	-	-	-	-	-	-	-	3
CO4	3	3	3	-	-	-	-	-	-	-	-	3
CO5	3	3	3	-	-	-	-	-	-	-	-	3
Avg CO	3	3	3	-	-	-	-	-	-	-	-	3

1 Low 2 Medium

3 High

Unit No.1			
	Allotment of		Mapped
Details of Topic	Hours		with CO
			Number
	L	T/A	СО
Introduction to the Working Stress Method of RCC design. Basic	07		1
concept in design for flexure, assumptions, design constants.			
Analysis of the rectangular section. (Balanced, under-reinforced and			
over-reinforced sections).			
Introduction to Prestress Concrete: Properties of high grade			
materials, concepts of prestress concrete, method of pre-stressing,			
losses in pre- stressing. Various systems for pre-stressing with			
particular reference to Freyssinet, Magnel Blatton and Giffod Udall			
system			
	07		
Unit No.2			L
Introduction to Limit State Design: Concept of limit state design	10		2
and philosophy. Characteristic values, partial safety factors, stress			
strain relationship stress block parameters, failure criteria, types and			
properties of reinforcement, limit state of Serviceability and limit			
state of collapse. Limit states of durability			
Limit State of serviceability:			
Causes and control of cracking: Crack in plastic concrete at early			

age, cracks due to temperature and shrinkage, restrain induced		
cracks, cracks due to loading. Needs for crack width control.		
Moment– curvature relationship, deflection control of beams and one		
way slabs. Limit state of collapse in flexure: Analysis and design of		
singly reinforced rectangular section. Limit state of Collapse in		
Flexure: Analysis & design of the Tee & L- beam section.		
Limit state of Collapse in Shear & Bond: Design of beam for shear,		
shear span, post cracking resistance, shear mechanism approach,		
shear failure modes and collapse loads, interaction of shear, flexure		
and axial force ,Check for bond.		
	10	
Unit No.3		
Limit state of collapse in compression: Analysis & design of short	08	3
axially loaded column. Columns subjected to uni-axial bending, use of		
interaction curves.		
	08	

Unit No.4			
Design of one -way, simply supported, single span and cantilever	07		4
slabs and continuous slab / beam with IS coefficients,			
	07		
Unit No.5		1	
Design of rectangular pad / slopped footing for axial load. Design of	04		5
Simply supported Two-way slab			
	04		

	1.	P.C.Varghese, Limit State design of Reinforced Concrete, 2nd Edition, PHI Learning Pvt Ltd, 2006			
Text Books	2.	M.L.Gambhir, Design of Reinforced Concrete, 4th Edition, PHI Learning Pvt Ltd, 2011			
	3. M.L.Gambhir, Fundamental of Reinforced Concrete Design, 5th Edition, PH Learning Pvt Ltd, 2011				
EBooks	1.	Design of Reinforced Masonry Structures, Second Edition, Narendra Taly, Ph.D., P.E., F.ASCE			
EBOOKS	2.	Building Design and Construction Handbook, Sixth Edition, Frederick S. Merritt			

Reference	1.	Dr. V.L.Shah & Dr. S.R.Karve, Limit State Theory and Design of Reinforced Concrete (As Per IS : 456 - 2000), 7th Edition, Structures Publications, 2013
Books	2.	"Illustrated Reinforced Concrete Design" by Dr. V.L.Shah and Dr. S.R. Karve, 'Structures Publications', Pune 411009
online TL Material	1.	Design of Reinforced Concrete Structures, Civil Engineering, Prof. N. Dhang, IIT Kharagpur

	List of Code/Handbook						
Applicable for Unit No.							
ALL	IS 456 PLAIN AND REINFORCED CONCRETE - CODE OF PRACTICE (Fourth Revision)		2000				

Censes G. Ronde Allen (Dr. A.N. Dashade) Bos Member

De (Dr. Avinash N Shrikhande,) BOS (Gvil Engg) Chairman

Sem: V		Total Hours Distribution per week				
Total Credit: 03	Lecture (L): 3Hrs	Tutorial/Activity (T/A): NA Practical (P): 2 Hrs				
Subject Code	BTCVE 503T	BTCVE 503T Name of Subject: Civil Engineering Materials, Testin Evaluation				
		Examination Sche	eme			
Interna	l Marks:	University	Minimum Passir	ng Examination		
		Marks:	Marks:	Duration:		
30 N	larks					
	ional Examination) Activity based)	70 Marks	45 Marks	3 Hours		

Course	e Objective
1	The properties and importance of various constituent materials of concrete used in construction
2	The mechanical behaviour of engineering materials under compressive and tensile loads
3	The fundamentals of fracture mechanics and identify initiation and propagation of crack around stress-strain fields.
4	The standard testing procedures and assess engineering properties of construction materials.
5	The main goal of this course is to provide students with all information concerning principle, way of measurement, as well as practical application of mechanical characteristics.

Course	Course Outcome				
After co	mpletion of syllabus student able to				
1.	Evaluate the role of materials in Civil Engineering				
2.	Know the mechanical behaviour and properties of steel and concrete by standard				
	testing procedures for identifying their performance				
3.	Explain special materials, composite materials and use of new techniques in				
	constructions for satisfying the future needs of industry.				
4.	Exposure to a variety of established material testing procedures/techniques and the				
	relevant codes of practice				
5.	Evaluate and write a technical laboratory report.				

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Subject Code &CO NO.												
1	2	3			2		2					3
2	2			2	2	1	2		1			2
3	2			2	2	2	3					3
4	2	3		2	2							3
5	2			3						1	2	3

1 Low 2 Medium

3 High

Unit No.1 Introduction To Civil Engineering Materials			
Details of Topic		tment of ours	Mapped with CO Number
	L	T/A	СО
Introduction and uses of cement, sand, aggregates	01		1
concrete, mortar and grouts, masonry mortars, rendering, cementations	02		1
grouts			
RCC, clay bricks, calcium silicate bricks, concrete blocks., rubbles,	02		1
steel, mechanical properties of steel, different applications			
Floor and roofing tiles, slates, timber, strength of timber, engineered	02		1
wood products metals, glass for glazing, glass fibres, glass wool			
Water proofing agents: any five water proofing agents, difference	01		1
between wetting agents and water proof agent			
	08		
Unit No.2 Basic Properties of Materials			
Details of Topic	Allotment of Hours		Mapped with CO Number
	L	T/A	CO
Importance of materials in civil engineering construction, types of	04		2
materials such as ceramics, concrete, composites, optical /electronics			
materials, glass, metals, nano-materials, polymers and plastics, wood			
and other materials, comparison of strengths of various materials.			
Some basic properties of materials such as temperature, energy,	03		2
specific heat, thermal conductivity, coefficient of thermal expansion,			

comparison for environmental impact, health and safety.			
	07		
Unit No.3 Special Materials			
Details of Topic			Mapped with CO Number
	L	ours T/A	СО
Composite Materials: RCC, FRC, AAC (Autoclaved aerated concrete)	03		3
blocks, WPC (Wood-plastic composites) Material, Cera sheets, 3D wall			
WPC panels, polymer based materials, steel/concrete composite bridge			
decks, fibre reinforced plastics structural insulated panels.			
New Techniques in Constructions-Introduction, 3D printing, photo	04		3
catalytic admixture, self-healing concrete, Biomaterials, zero cement			
concrete ,hemp lime, wood-glass epoxy composites, bamboo.			
	07		
Unit No.4 Testing Procedures of Materials			
Details of Topic	Allo	otment	Mapped
		of ours	with CO
			Number
	L	T/A	СО
Material Testing, Machines and Equipment RequirementsNecessity	03		4
of material testing, various testing methods, destructive tests,			
classification of destructive testsstatic, impact and cyclic testing, non-			
destructive testing- its classification ,visual inspection, penetration			
test, ultrasonic test.			
Testing Procedures for bricks, reinforcing steel, fine aggregates, coarse	04		4
aggregates. Documenting the experimental program, including the test			
procedures, collected data, method of interpretation and final results.			
	07		
Unit No.5 Testing and Evaluation Procedures of Materials		1	
		otment of	Mapped with CO
Details of Topic	Н	ours	Number
Quality control Use of test date / testing and its in the interview	L 04	T/A	CO 5
Quality control- Use of test data/ testing reports in the material	04		5
selection for various civil engineering projects /construction, Sampling,			
Acceptance criterion,			
Code of practice and guidelines in this regards for	03		5
Cements; Aggregates; Concrete (plain and reinforced); Soils; Bitumen			
and asphaltic materials; Timbers; Glass and Plastics; Structural Steel.			
	07		

			References				
Applicable for Unit	Name of Book	Name of Author	Name of Publisher	Edition		Categor	y
No.					Text Book	Research paper	Reference book
1,2	'Building	Chudley, R.,	R.	(6th	\checkmark		
	Construction	Greeno	Butterworth-	ed.)			
	Handbook	(2006),	Heinemann				
4	Mechanical	Kyriakos	Cognella				\checkmark
	Testing of	Komvopoulos					
	Engineering	(2011),					
	Materials,						
1,2,4	' Highway	Khanna, S.K.,	Nem Chand &	Fifth	\checkmark		
	Materials and	Justo, C.E.G	Bros,	Edition			
	Pavement	and					
	Testing'	Veeraragavan					
1,2,3	Mechanical	E.N. Dowling	Prentice Hall,				√
	Behaviour of	(1993)	International				•
	Materials		Edition				
1-5	Building	N.	Publisher:				√
	Materials, Testi	Subramania	Oxford				
	ng, and		University				
	Sustainability		Press, New				
			Delhi				
1-5	Related papers					√	
	published in						
	international						
	journals						

List of Code/Handbook							
Applicable for Unit No.	Title of Code	Type of code	Year of Publication				
	IS: 456 – code of practice for plain and reinforced concrete.		2000/2016				
	IS: 2386 – methods of tests for aggregate for concrete.		1963				
	10262; SP 23 – codes for designing concrete mixes.		2009/2019				
	IS: 13311 – ultrasonic testing of concrete structures.		1992				

IS:1199 - Fresh Concrete – Tests		2018
IS:3495 - Burnt Clay Bricks Tests		1992/2016
IS:1786 –High strength deformed steel bars and wires for concrete reinforcement— specification		2008
IS:2062 - Hot rolled medium and high tensile structural steel — specification		2011
IS:1608 - Metallic Materials — Tensile Testing (Part 1-3)		2005/2018
IS:1599 - Methods for bend test		2012
American Society for Testing and	Annual Book of	(post 2000)
Materials (ASTM),	ASTM Standards	
BIS, IRC, ASTM, RILEM, AASHTO,		
etc. corresponding to materials used for		
Civil Engineering application		

CIVIL ENGINEERING MATERIALS, TESTING AND EVALUATION

BTCVE503P

Evaluation Scheme: (25-Internal/25-External)

(P-2 Hrs/Week); Total Credits- 01

Minimum Eight Practical's from the given below list should be performed

Sr.	Details of Topic
No.	
1	Tests on cement (Any Two)
1	
	Field test on cement, Fineness, Normal consistency, Initial and Final Setting times, Specific
	gravity, Soundness, Compressive strength,
2	Tests on fine aggregate (Any Two)
	Grain size distribution, Uniformity coefficient and fineness modulus, Specific gravity,
	Density, Void ratio, Bulking & Absorption
3	Tests on coarse aggregate (Any Two)
	Grain size distribution, Uniformity coefficient and fineness modulus, Specific gravity,
	Density, Void ratio, Absorption
4	Concrete mix Design
5	Test on concrete by using IS code method (Any Two)
	(a) Workability test, Slump test, Compaction factor test, Flow table test, Vee-Bee Consist
	meter,
	(b) Compressive strength, Split tensile strength, Flexure test on beams, Modulus of
	elasticity
6	Tests on bricks Crushing strength, water absorption and efflorescence
7	Tensile and Compressive strength of materials & concrete composites
8	Tests on polymers and polymer-based materials
9	Testing on Ceramic Floor, Wall Tiles, Paver-blocks, Mosaic tiles, IS code recommendations.
10	Study of non-destructive testing of concrete (NDT)
11	Field density of bituminous roads
	1

A.N. Dabhade) bos Member

(Dr. Avinash N Shrikhande,) BOS (Gvil Engg) Chairman

Sem: V	Total Hours Distribution per week								
Total Credit: 03	Lecture (L): 3 Hrs	e (L): 3 Hrs Tutorial/Activity (T/A): 0 Hrs. Practical (P): 0 Hrs.							
Subject Code	BTCVE504T	Name of Subject: Professional Practice, Law &							
		Ethics							
Examination Scheme									
Inter	nal Marks:	University	Minimum Pas	ssing Examination					
		Marks:	Marks:	Duration:					
30) Marks								
	essional examination) or Activity based)	70 Marks	45 Marks	s 3 Hours					

Course Objective								
1	The objective of this course is to inculcate the sense of social responsibility among							
	learners and to make them realize the significance of ethics in professional							
	environment so as to make them a global citizen							

Course Outcome						
After co	ompletion of syllabus student able to					
1	Understand basic purpose of profession, professional ethics and various moral and social issues.					
2	Analyse various moral issues and theories of moral development					
3	Realize their roles of applying ethical principles at various professional levels					
4	Identify their responsibilities for safety and risk benefit analysis.					
5	understand their constructive roles in dealing various global issues					

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
BECVE504T						2	2	3				1
BECVE504T 2						2	2	3				1
BECVE504T						2	2	3				1
BECVE504T						2	2	3				1
BECVE504T						2	2	3				1

1 Low

3 High

SYLLABUS

2 Medium

Unit No.1			
	Allot	ment	Mapped
Details of Topic	of		with CO
	Hou	s	Number
	L	T/A	СО
Human Values, Morals, values and Ethics, Integrity, Work ethics, Service			
learning, Civic virtue, Respect for others, Living peacefully, Caring, Sharing,	08		1
Honesty, Courage			
Unit No.2			
Engineering Ethics, Senses of 'Engineering Ethics', Variety of moral			
issues, Moral dilemmas, Moral Autonomy, Kohlberg's theory,	07		2
Gilligan's theory			
Unit No.3			
Engineering as Social Experimentation, Engineering as			
Experimentation, Engineers as responsible Experimenters, Codes of			
Ethics, A Balanced Outlook on Law(Industrial Disputes Act, 1947;			
Industrial Employment (Standing Orders) Act, 1946; Workmen's	07		3
Compensation Act, 1923; Building & Other Construction Workers (regulation			
of employment and conditions of service) Act (1996) and Rules (1998);			
RERA Act 2017, NBC 2017)			
Unit No.4			
Safety, Responsibilities and rights, Safety and Risk, Assessment of			
Safety and Risk, Risk Benefit Analysis and Reducing Risk, Collective	07		4
Bargaining, Professional Rights, Employee Rights			

Unit No.5		
Global issues, Multinational Corporations, Computer Ethics, Weapons		
Development, Engineers as Managers, Consulting Engineers, Engineers	07	5
as Expert Witnesses and Advisors, Corporate Social Responsibility	07	5

Referenc			NT 6D 111 1	D 114			
Applicable for Unit	Name of Book	Name of Author	Name of Publisher	Edition	Catego Text	Reference	
No.					Book	paper	book
	Professional Ethics	R. Subramaniam	Oxford Publications, New Delhi.				Yes
	Human Values And Professional Ethics by,	Jayshree Suresh and B. S. Raghavan	S. Chand Publications				Yes
I,II,III	Ethics in Engineering by–	Mike W. Martin and Roland Schinzinger	Tata McGraw-Hill – 2003.				Yes
, IV,V	Human Values & Professional Ethics by,	S. B. Gogate	Vikas Publishing House Pvt. Ltd., Noida.				Yes
	Professional Ethics and Human Values	A. Alavudeen, R.Kalil Rahman, and M. Jayakumaran	University Science Press.				Yes
	Engineering Ethics & Human Values	M.Govindarajan, S.Natarajan, and V.S.SenthilKumar	PHI Learning Pvt. Ltd – 2009.				Yes

Censes G. Ronde

Jer 4000 (Dr. A.N. Dalhade)

Bos Member

2 (Dr. Avinash N Shrikhande,) BOS (Gvil Engg) Chairman

Sem: V	Total Hours Distribution per week						
Total Credit: 01	Lecture (L): 00 Hrs	e (L): 00 Hrs Tutorial/Activity (T/A): 0 Hrs. Practical (P): 02 Hrs.					
Subject Code	BTCVE507P Name of Subject: Industrial Training & Professional Skill Training						
Examination Scheme							
Internal Marks:	University Marks:	Minimum Passing Marks:	Examination Duration:				
50 Marks	50 Marks	50 Marks	-				

Course Objective							
1	The objective of the course is to give awareness of practical application of various theoretical concepts.						
2	The objective of the course is to enhanced the skills by using software in the field of Civil Engineering						

Course	Course Outcome					
After co	mpletion of syllabus student able to					
1	Understand organizational skills & professional practices					
2	Interpret the communication skills of organizational members with each other					
3	Analyze the structural problems by using STADD.PRO					
4	Design the structural members by using STADD.PRO					

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
BECVE507P1					3				2	2		1
BECVE507P2					3				2	2		1
BECVE507P3					3				2	2		1
BECVE507P4					3				2	2		1
		1	1 Low		2 Mee	dium		3 Hi	igh			

SYLLABUS

Part A: Industrial Training

(25 Marks Internal and 25 Marks External)

After successful completion of industrial training of 2 to 3 weeks, students have to give Industry training report including certificate of completion of industrial training.

Part B: Professional Skill Training on STADD.PRO/Any Other (25 Marks Internal and 25 Marks External)

STAAD PRO is structural analysis and designing software which is used by civil engineers to analyse and design the structure. It helps to reduce the calculations of Shear Force, Bending Moment and deflection of structure.

- Practical Based on: Overview of Structural Analysis and Design, Introduction of STAAD. Pro V8i, STAAD Editor, Creating a New Project in STAAD.Pro, Units, Model Generation, Creating Nodes & Members, Select Menu, Insert Node, Add Beam, Modeling Methods, Long and Short Method Practice, Modeling Practice, Working On Examples.
- Practical Based on: Support Specification, Member Property Specification, And Material Specification. Loading, Analyzing. Understanding Units, Working on examples, Understanding Material Properties, Understanding Various Types of Loads, and Implementing Loads.
- Practical Based on : Performing Analysis, Pre Analysis Print, Post Analysis Print, Area Load, Floor Load.
- 4. Practical Based on: Wind Load Generation, Load Combination & Auto Load Combinations, Repeat Load Cases, Concrete Design.

5. Practical Based on : Concrete Column Design, Concrete Beam Design, Slab Design.

Student have to submit maximum four experiments on above contents (Selection of contents made by concern faculty) in 8 weeks.

Proposed amendment is "STAD Pro V8i or Any Other Equivalent Software may also be used for performing the same activities.

RASHTRASANT TUKADOJI MAHARAJ NAGPUR UNIVERSITY, NAGPUR FACULTY OF SCIENCE & TECHNOLOGY

B. TECH CIVIL ENGINEERING (CHOICE BASED CREDIT SYSTEM)

Sem: V	Total Hours Distribution per week							
Total Credit: 00	Lecture (L): 02 Hrs	Lecture (L): 02 HrsTutorial/Activity (T/A): 0 Hrs.Practical (P): 0 Hrs.						
Subject Code	BTCVE508AU Name of Subject: Organizational Behaviour							
	Examination Scheme							
Internal Marks:	University Marks:	Minimum Passing Marks:	Examination Duration:					
50 Marks AUDIT								

Course Objective						
1	The objective of the course is to create awareness among learners about the various essential aspects of organizational processes and structure and motivation in organization.					

Course	Course Outcome						
After co	After completion of syllabus student able to						
1	Understand the concept and importance of organizational behaviour.						
2	Acquire the knowledge of interpersonal behaviour and transaction analysis						
3	Know different traits and theories of personality						
4	Analyze the importance of motivation in organization and types of leadership						

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
BECVE508AU1									3	2		1
BECVE508AU2									3	2		1
BECVE508AU3									3	2		1
BECVE508AU4									3	2		1

1 Low 2 Medium

3 High

Details of Topic		otment of ours	Mapped with CO Number
	L	T/A	CO
Concept of organization behavior	01		1
Importance of organization behaviour	02		1
Key elements of organization behaviour	01		1
Scope of organizational behaviour.	02		1
	06		
Unit No.2: Introduction to interpersonal behavior			
Details of Topic		otment of ours	Mapped with CO Number
	L	T/A	CO
Nature and meaning of interpersonal behaviour	01		2
Concept of transaction analysis	02		2
Benefits and uses of transaction analysis	01		2
Johari window model.	02		2
	06		
Unit No.3: Introduction to personality			
Details of Topic		otment of ours	Mapped with CO Number
	L	T/A	CO
Definition and meaning of personality	02		3
Importance of personality	02		3
Theories of personality, personality traits.	02		3
	06		

Unit No.4 : Introduction to Motivation and leadership				
Details of Topic		otment of ours	Mapped with CO Number	
	L	T/A	СО	
Concept and importance of motivation	01		4	
Maslow's two factor theory of motivation.	02		4	
Significance of motivation in organization.	01		4	
Types of leadership styles	02		4	
	06			

		F	References						
Applicable	Name of	Name of	Name of	Edition		Category			
for Unit No.	Book	Author	Publisher		Text Book	Research paper	Reference book		
	Organizational behaviour	MN Mishra							
I,II,	The human side of organization	Michale Drafke							
III,IV	Management and Organizational behaviour	Laurie.J. Mullins							
	Organizational behaviour	K. Aaswathappa							

Censes 4: Ronde

100 Swells (Dr. A.N. Dashade) Bos Member

(Dr. Avinash N Shrikhande,) BOS (Gvil Engg) Chairman

Sem: V	Total Hours Distribution per week: 3-0-0						
Total Credit:3	Lecture (L): 3 Hrs	Tutorial/Activity (T/A):0 Hrs. Practical (P): 0 Hrs.					
Subject Code	BTCVE505T	Name of Subject: Elective – I (Advanced Structural Analysis)					
Examination Scheme							
Inter	nal Marks:	University Marks:	Minimum Passing Marks:	Examination Duration:			
(15 Marks for s	0 Marks essional examination) for Activity based)	70 Marks	45 Marks	3 Hours			

Course	Course Objectives					
1	To provide the knowledge about strain energy methods					
2	To provide the knowledge about buckling of columns and analysis of arches					
3	To analyse multi-storeyed frame structures using approximate methods					
4	To develop an understanding, the basic principles of the matrix method of structural analysis					
5	To analyse non-prismatic structures (beams and frames) using column analogy method					
6	To introduce finite element method and provide knowledge of structural dynamics					

Course (Course Outcomes					
After con	After completion of syllabus students will be able to					
1	1 Compute deflections in two dimensional structures using Strain energy method					
2	Understand response of long columns					
3	3 Use the approximate method for analysis of multi-storied frame structures					
4	4 Understand Flexibility matrix method and application of column analogy					
5	Understand the concepts related to structural dynamics & finite element method					

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Subject Code &CO NO.												
BECVE505T.1	3	3	3	3	3	-	-	-	-	-	-	2
BECVE505T.2	3	3	2	3	3	-	-	-	-	-	-	1
BECVE505T.3	3	3	3	3	3	-	-	-	-	-	-	1
BECVE505T.4	3	3	3	3	1	-	-	-	-	-	-	2
BECVE505T.5	3	3	2	2	3	-	-	-	-	-	-	2
	•	1]	Low		2 Medi	um	•	3 Hig	gh			

Unit No.1: Details of Topic:		otment of ours	Mapped with CO Number	
	L	T/A	СО	
Strain energy method as applied to the analysis of redundant frames and				
redundant truss up to two Degrees, Determination of deflection of trusses.	7		1	
Castigliano's theorems. Maxwells reciprocal theorem. Bettis theorem.				
	7			
Unit No.2				
Bucking of columns: Euler's and Rankine's formula, Secant Formula				
Analysis of Two-Hinged Arches S.F. and normal thrust, parabolic	5		2	
arches.				
	5			
Unit No.3	I		I	
Approximate method: Analysis of multi-stored frame, portal, cantilever and	7		2	
substitute frame methods. (max. three bay three storey).	/		3	
	7			
Unit No.4				
Introduction to Flexibility Method up to two DOF.				
Analysis of Grid Member using Stiffness Method				
Column Analogy Method – Application to fixed beams, Stiffness and	9		4	
carryover factor				
	9			

Unit No.5		
Introduction to structural dynamics, D' Alembert Principle, inertia		
force, equation of motion (free vibration), SDOF system, Damping,		
natural frequency, MDOF (up to 3 DOF), Mode shape and nodal		
frequency.	8	5
Introduction to Finite Element method, basic concepts, discretization of		
structures, Rayleigh Ritz method for bar elements (prismatic/non-		
prismatic) Displacement based bar elements (prismatic/non- prismatic)		
	8	

		R	eferences				
Applicable for Unit No.	Name of Book	Name of Author	Name of Publisher	Edition	Text Book	Categor Research paper	y Reference book
All	Theory of Structures	Timoshenko S. P.&Young D.H.	McGraw Hill 1965	International Edition	-	-	
All	Theory and Analysis of Structures; Vol. I & II'',	Jain, O.P. & Arya, A.S.	Nemchand Brothers, Roorkee			-	-
	Matrix Analysis	Wear & Gear					

Center Gilling

Acometer (Dr. A.N. Dashade) Bos Member

(Dr. Avinash N Shrikhande,) BOS (Gvil Engg) Chairman

Sem: V		Total Hours Distribution per week					
Total Credit: 3 Lecture : 3 Hours		Tutorial//Activity(T/A):N.A	Practical(P): N.A				
Subject Code	BTCVE505T	Subject:- Geo Synthetics Engineering (Elective-I)					
	Examination Scheme						
Internal Marks-	University	Minimum Passing Marks:	Examination				
Internar Warks-	Marks	Winning Tarks.	Duration:				
30 Marks (15 Marks for sessional Examination) (15 Marks for Activity based)	70 Marks	45 Marks	3Hours				

Course	Course Objective						
1	To determine the properties, functions and applications of various geosynthetic materials.						
2	To impart knowledge about manufacturing methods.						
3	Introduce to the students, Mechanism, improvement of Bearing capacity.						
4	To impart knowledge about applications and functions of geosynthetics.						
5	To design reinforced soil structures.						

Course	Course Outcome					
After co	After completion of syllabus student able to					
1	To understand types of geosynthetics and its techniques to use properly in suitable					
	construction site.					
2	Understand the different functions of Geosynthetics .					
3	Understand the applications of geosynthetics in Civil engineering field.					
4	Study and identify about various reinforced soil structures.					
5	Understand reinforced soil embankments.					

CO/ P0	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
C 01	3	2	2	2		2	2	1			2	2
C 02	3	2	1	2	1		2	1		1		2
C 03	3		2	2	1	2		1		2		2
C 04	3		1	1	1	2	2	1		2		2
C 05	3	2	2	2	2			1			2	2
AVG.	3	2	1.67	1.83	1.4	2	2	1		1.67	2	2

1Low

3High

SYLLABUS

2Medium

Details of Topic	Allotm of Hours		Mapped with CO Number	
	L	T/A	со	
UNIT NO.1 Properties and Laboratory Testing of Geosynthetics				
Geotextiles: Basic properties and its determination.	01		1	
Determination of Hydraulic properties, Mechanical properties and its				
determination - Results of the tests Geotextile Interface friction				
evaluation -Modified Direct Shear Test, pull out test, Results of the	03		1	
test Survivability Characteristics – puncture test, CBR Push through				
test, Tear test, Diaphragm bursting Test, Cone drop				
Test Durability Characteristics – Abrasion resistance Geogrid:				
Mechanical properties-Tension test, Geogrid-soil interaction,				
Geogrid Interface friction evaluation -Modified Direct Shear Test,	03		1	
pull out test. Range of values of important properties,				
Functional Requirements of Geosynthetics, Minimum Values				
specified by regulatory authorities IS Code provisions	01		1	
	08			
UNIT NO.2 Erosion Control and Pavement Construction				
Erosion control products, Mechanism of erosion control with				
reinforced vegetation, Installation of REPs on slopes, Functions of				
coir Geotextile, Geotextile silt fences for sediment control, silt fence	03	2		
installation				
: Functions of Geotextile in Pavement, Advantages, U.S. forest				
Service Design method, Construction procedure	03		2	
	06			

UNIT NO.3 Filtration and drainage applications & Bearing		
capacity improvement		
Geotextile filter mechanism, Filter criteria, Geotextile survivability,		
Installation of Geotextile under riprap slope protection, Geotextile	03	3
chimney drains		
Reinforced soil bed, Mechanism, Modes offailure (Binquet and Lee		
theory), Results of Experimental Investigations for optimizing the		
parameters of reinforced soil bed, Bearing capacity ratio and its	04	3
variation with various parameters		
	07	
UNIT NO.4 Reinforced retaining walls		
Applications, Advantages, Types, Components of reinforced soil wall,		
Types of facing units, Construction sequence of Geotextile reinforced	04	4
wall and Geogrid soil wall,		
Failure mechanism and Analysis of reinforced retaining wall Design		
of Geotextile reinforced retaining wall - General consideration,	03	4
Design procedure		
	07	
UNIT NO.5 Reinforced soil embankments		
Applications, Advantages	02	5
Containment systems using Geomembrane: advantages of using	06	5
composite barrier for Liners and Covers, Single composite liner		
system for MSW landfill, Double composite liner system for HW		
landfil		
	08	

Reference	es								
Applicable	Name of	Name of	Name of	Editio	Ca teg ory				
for Unit No.	Book	Author	Publisher	n	Text Book	Research paper	Refer ence book		
1,2,3	Engineering with Geosynthetics	G.V.Rao and G.V.S.S Raju	Tata- McGraw Hill Publication, New Delhi	2004	Text Book	-	-		
1,2,3,	Ground Improvement Techniques, P	Purusho thams Raj	Universit y Science Press, 1 st Ed.	2011					
1,2,3,4,5	Geosynthetic s.	J. N. Mandal,	World, New Age Internationa I Publishers Pvt. Ltd., I st Ed.,	2007					
1,2,3,4,5	Constructio n and Geotechnical Engineering using Synthetic Fabrics,.	R.M. Koerner and J.P. Welsh,	John Willey and Sons,	1980					
1,2,3	Designing with Geosynthetic s	R.M. Koerner, 4th edition, PHI, 1997	PHI	1997					
1,2,3	Fundament als of Geosynthetic Engineering	Sanjay Kumar Shukla and Jian-Hua Yin,	,Taylor and Francis Group UK,	2002					
4	Reinforced Soil and its Engineering Applications,	Swami Saran, 1st edition	I. K. Internationals	2006					

	List of Code/Handbook								
Applicable for Unit No.	Title of Code	Type of code	Year of Publication						
1	Indian Standard GLOSSARY OF TERMSFOR GEOSYNTHETICS PART 1 TERMS USED IN MATERIALS AND PROPERTIES	Indian Standard	Februar y 1992						
2	Indian Standard GEOTEXTILES - METHODS OF TEST PART 5 DETERMINATION OF TENSILE PROPERTIES USING A WIDE WIDTH STRIP	Indian Standard	Feb rua ry 199 2						

Censes 4. Ronde Allowell (Dr. A.N. Dashade) Bos Member

5_20 (Dr. Avinash N Shrikhande,) BOS (Gvil Engg) Chairman

Sem: V	Total Hours Distribution per week								
Total Credit:03	Lecture (L): 3 Hrs	ccture (L): 3 Hrs Tutorial/Activity (T/A): 3 Hrs. Practical (P): Nil Hrs							
Subject Code	BTCVE505T	Name of Subject: Geo Environmental Engineering (Elective-I)							
	Examination Scheme								
Inte	ernal Marks:		University	Minin	num	Examination			
			Marks:	Passing I	Marks:	Duration:			
,	30 Marks								
(15 Marks for sessional examination) (15 Marks for Activity based)			70 Marks	45 Ma	arks	3 Hours			

Course	Objective
1	To create a awareness in the field of Geo-Environmental Engineering.
2	To impart the knowledge on Geotechnical aspects in the disposal of waste materials and the remediation of contaminated sites.
3	To familiarise design of landfill and know the effect of change in environment on soil properties.
4	Explain the effects of pollutants in soil properties.

Course	Course Outcome						
After co	mpletion of syllabus student able to						
1	Deal with geo-environmental engineering problems						
2	Utilize waste in Geotechnical applications						
3	Design Landfill & Mange leachate and landfill gas						
4	Do investigation on contaminated site and soil remediation						
5	Assess variation in engineering properties of soil due to change in environment						

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO 1	2	2	2	1	1	_	_	_	1	1	2	2
CO 2	2	2	2	2	1	-	-	-	1	2	2	2
CO 3	2	2	2	1	1	-	-	_	1	1	2	2
CO 4	2	2	2	1	1	-	-	-	1	2	2	2
CO 5	2	2	2	1	1	-	-	-	1	1	2	2

1 Low

2 Medium

3 High

Unit No.1			
Details of Topic	Allo	Mapped with CO Number	
	L	T/A	CO
Introduction and Soil-water-environment interaction :	01		
Introduction to geo-environmental Engineering,	01		
Soil-water-environment interaction relating to geotechnical problems,	01		1
Waste:-source, classification and management of waste,	01		
Physical, chemical and geotechnical characterization of municipal solid	01		
waste,			
Impact of waste dump and its remediation	01		
	06		
Unit No.2		I	
Details of Topic	Allo	Mapped with CO Number	
	L	T/A	СО
Geotechnical application of waste and disposal:	01		
Geotechnical use of different types such as Thermal power plant waste,	01		
Municipal Solid Waste, mine waste,	01		2
Industrial waste.	01		
Waste disposal facilities,	01		

Parameters controlling the selection of site for sanitary and industrial landfill.	01		
Site characterization. MoEF guidelines.	01		
	07		
Unit No.3	1	1	
Details of Topic		otment of ours	Mapped with CO Number
	L	T/A	CO
Landfill Components:Landfill layout and capacity, components of landfill and its functions.	01		
Types and functions of liner and cover systems,.	01		
Compacted clay liner, selection of soil for liner, methodology of construction	02		
Leachate, Gas Management and Geosynthetics: Management of Leachate and	02		3
gas.			· ·
Various components of leachate collection and removal system and its design.	01		
gas disposal/utilization. Closure and post closure monitoring system,			
Geosynthetics- Geo membranes - geosynthetics clay liners -testing and design	02		
aspects.			
-	09		
Unit No.4			
	Alle	otment	Mapped
Details of Topic	Н	of ours	with CO Number
	L	T/A	СО
Soil remediation: Investigation of contaminated soil, sampling, assessment.	02		
Transport of contaminants in saturated soil	01		
Remediation of contaminated soil- in-situ / exit remediation, bio remediation,	01		
thermal remediation, pump and treat method,	01		4
phyto remediation and electro-kinetic remediation	01		-
	06		
Unit No.5	06		
	1 •		.
Details of Tarris		otment of	Mapped with CO
Details of Topic		ours	Number
	L	T/A	CO
Variation in Engineering properties of soil	02	•	
	02		5
Variation in Engineering properties of soil atterberg limit, shear strength,	01		5
			5

		R	References				
Applicable	Name of Book	Name of	Name of Publisher	Edition		Category	7
for Unit No.		Author			Text Book	Research paper	Reference book
1	Geoenvironmental Engineering: Site Remediation, Waste Containment, and Emerging Waste Management Technologies,	Hari D. Sharma, Krishna R. Reddy	John Wiley & Sons Inc.	2004			
2	Geoenvironmental Engineering: Principles and Applications	Reddi L.N and Inyang HI	Marcel Dekker Inc Publication	2000			
3	Geoenvironmental Engineering: Contaminated Soils, Pollutant Fate	R. N. Yong,	Mitigation Lewis Publication	2000			
4	Waste Disposal in Engineered landfills	Manoj Datta	Narosa Publishing House	1997			

Ser 406 Or. A.N. Dashade) Bos Member

(Dr. Avinash N Shrikhande,) BOS (Gvil Engg) Chairman

Sem: V	Total HoursDistribution per week					
Total Credit: 3	Lecture : 3 Hours	Tutorial//Activity(T/A): 0 Hrs	Practical(P): 0 Hrs			
Subject Code	BTCVE505T	Subject: Advanced Building Materials (Elective-I)				
Examination Scheme						
Internal Marks	5- University	Minimum Passing Marks:	Examination Duration:			
30 Marks (15marks. for sessional Examination) (15 Marks for Activity based)	70 Marks	45 Marks	3 Hrs			

Course	Course Objectives					
This co	ourse will enable students to					
1	Understand composition and microstructure of various materials used in civil engineering					
	application.					
2	Understand the manufacturing and types of mortars.					
3	Understand engineering behavior of various materials.					
4	Understand the use of advanced materials in construction projects.					
5	Understand the sustainable materials used in construction.					

Course O	Course Outcomes					
After comp	After completion of syllabus, students would be able to					
1	Understand the structural, physical and long term performance of building materials used in construction.					
2	Understand special mortars and admixtures used in Civil engineering applications.					
3	Understand the properties of Ceramic materials in construction projects.					
4	Understand the uses of polymeric materials in construction.					
5	Understand green building concept and materials.					

				Low		 //edium	 1	3H	igh			
AVG.	2	2	2	1.4	1	-	-	-	1	1.4	2	2
CO5	2	2	2	1	1	-	-	-	1	1	2	2
C 04	2	2	2	1	1	-	-	-	1	2	2	2
C 03	2	2	2	1	1	-	-	-	1	1	2	2
C 02	2	2	2	2	1	-	-	-	1	2	2	2
C 01	2	2	2	2	1	-	-	-	1	1	2	2
CO/ P0	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12

U

Details of Topic		tme	Mapped with CONu mber	
	L	T/A	со	
UNIT NO.1(CONSTRUCTION MATERIALS)				
a) Classifications of Construction Materials.	01		1	
b) Consideration of physical, Mechanical, thermo-physical Properties, Characteristics behaviour under stress.	03		1	
c) Selection criteria for construction materials, waste products, reuse and recycling.	03		1	
	07			
UNIT NO.2(MATERIALS FOR MAKING MORTAR AND CONCRETE)				
a)Lime manufacture, properties, hardening of lime, types of lime, lime concrete uses, cement, aggregates, water, characteristics, properties and uses of Pozzolana materials			2	
b) Types of mortars, special mortars, properties and applications, admixtures	03		2	
	06			

UNIT NO.3 (CERAMIC MATERIALS)		
a)Classification, Refractories, glass, glass wool.	02	3
b) Mechanical, thermal and electrical properties	03	3
c)Fire resistance materials, Uses and application.	03	3
	08	
UNIT NO.4 (POLYMERIC MATERIALS AND STEEL)		
a) Polymerization mechanism and depolymerisation.	02	4
b)Rubber and plastics, properties, effect of temperature on mechanical properties. Uses and application.	03	4
c) Types of structural steels, special steel, alloy steel, stainless steel, light gauge steel.	02	4
	07	
UNIT NO.5 (SUSTAINABLE MATERIALS)		
a)Green concepts in buildings, Green building materials ,Green building ratings IGBC and LEED manuals – mandatory	04	5
requirements.		
b)Rainwater harvesting &solar passive architecture. Environmental	03	5
friendly and cost effective building technologies, Requirements for		
buildings of different climatic regions.		
	07	

References								
Applicable	Name of	Name of	Name of	Edition		Category		
for Unit No.	Book	Author	Publisher		Text Book	Researc h paper	Referenc e book	
1&2	Engineering Materials	Rangwala S.C.	Chortor Publication	1991	TextBoo k			

٦

Г

3&4	Building Material		New Age International Publication	2006	Textbook	
5	The ideas of green building	A.K.Jain	Khanna publisher		Textbook	
2&3	Building Materials Technology Structural Performance & Environmental Impact	Bruntley L.R	McGraw Hill Inc	1995	Textbook	

Enster G. Ronde Allowella (Dr. A.N. Dashade) Bos Member

(Dr. Avinash N Shrikhande,) BOS (Gvil Engg) Chairman De

It • f

Sem: V	Total Hours Distribution per week					
Total Credit: 03	Lecture (L): 3 Hrs.	. Tutorial/Activity (T/A): 0 Hrs. Practical (P): 0 Hrs.				
Subject Code	BTCVE505T	VE505T Name of Subject: Ground Water Hy				
Examination Scheme						
Internal Marks:		University	Minimum Pass	sing Examination		
		Marks:	Marks:	Duration:		
30 Marks						
(15marks for sessional Examination) (15 Marks for Activity based)		70 Marks	45 Marks	3 Hours		

Course	Objective
1	To equip the students with capabilities required to explain groundwater occurrences, aquifer classification and aquifer properties in the many different geological environments.
2	Carrying out comprehensive hydrological flow systems analysis in groundwater systems.
3	Performing detailed groundwater balances, interpreting and working with the concepts of groundwater recharge, storage, and discharge.
4	Knowledge of the steady-state and transient groundwater flow processes and their physical description.
5	Application of analytical solutions to solve the groundwater management problems.

Course	Course Outcome				
After co	ompletion of syllabus student able to				
1	Define groundwater and its occurrences, classify the aquifers and illustrate aquifer properties				
2	Analyse the comprehensive hydrological flow systems in groundwater systems				
3	Perform detailed groundwater balances, interpreting and working with the concepts of				
	groundwater recharge, storage, and discharge				
4	Interpret the steady-state and transient groundwater flow processes and their physical				
	description				
5	Solve the groundwater management problems				

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	Р
BECVE505T CO1		3										2
BECVE505T CO2		3	3	1								2
BECVE505T CO3		2	3	1								2
BECVE505T CO4		3	2									2
BECVE505T CO5		2	1									2

1 Low

3 High

SYLLABUS

2 Medium

Unit No.1			
Details of Topic Introduction:		otment of ours	Mapped with CO Number
	L	T/A	CO
Ground water utilization & historical background, Role of groundwater in the hydrologic cycle, problems and perspectives, groundwater	02		1
resources status in India, ground water budget.			
Occurrence and movement of groundwater, Origin & age of ground water, rock properties affecting groundwater, groundwater column, zones of aeration & saturation	02		1
Aquifers and their characteristics/classification, groundwater basins & springs,	02		1
Darcy's Law, permeability & its determination, Dupuit's equation with assumptions, heterogeneity & anisotropy,	02		1
	08		
Unit No.2			
Details of Topic: Well Hydraulics:		otment of ours T/A	Mapped with CO Number CO
	01	1/A	2
Types of wells, methods of construction, tube well design, dug wells, pumps for lifting water, working principles, power requirement,	01		2
Steady Flow, Radial flow in confined and unconfined aquifers, pumping test	02		2
Unsteady Flow, General equation, derivation; thesis method, Cooper and Jacob method, Chow's method	02		2
Leaky aquifers (only introduction), interference of well, image well theory.	02		2
	07		

Details of Topic: Surface and Subsurface investigations of		otment of lours	Mapped with CO Number	
Groundwater:	L	T/A	СО	
Geologic methods, remote sensing, geophysical exploration,	01		3	
Electrical resistivity and seismic refraction, logging techniques, test drilling & ground water level measurement	02		3	
ARTIFICIAL GROUND WATER RECHARGE: Concept & methods of artificial ground water recharge,	02		3	
Recharge mounds & induced recharge, wastewater recharge for reuse, water spreading.	01		3	
	06			
Unit No.4	1			
Details of Topic: POLLUTION AND QUALITY ANALYSIS OF GROUND WATER	Н	otment of lours	Mapped with CO Number	
	L	T/A	CO	
Municipal /industrial /agricultural /miscellaneous sources & causes of pollution,	02		4	
Attenuation/ underground distribution / potential evaluation of pollution, physical /chemical /biological analysis of ground water quality, criteria & measures of ground water quality,	03		4	
Ground water salinity & samples, graphical representations of ground water quality.	03		4	
Ground Water Development: Conjunctive use, necessity, techniques and economics.	02		4	
	10			
Unit No.5				
Details of Topic : Modelling and Management of Groundwater:		otment of lours	Mapped with CO Number	
	L	T/A	СО	
Ground water modelling through porous media /analog / electric analog / digital computer models,	03		5	
Ground water basin management concept, hydrologic equilibrium equation, ground water basin investigations	02		5	
Data collection & field work, dynamic equilibrium in natural aquifers, management potential & safe yield of aquifers, stream-aquifer interaction.	03		5	
	08			

	References												
Applicable	Name of Book	Name of Author	Name of Publisher	Edition	Category								
for Unit No.					Text Book	Research paper	Reference book						
1	Ground Water	H.M.	Wiley Eastern		Yes								
		Raghunath	Publication, New										
			Delhi										
2 to 5	Ground Water	K. Todd	Wiley and Sons,		Yes								
	Hydrology		New Delhi.										
2 to 5	Ground Water	Bower. H.	McGraw Hill,				Tes						
	Hydrology		New Delhi										

Center G. Ronde

Approver (Dr. A.N. Dabhade) Bos Member

-22 (Dr. Avinash N Shrikhande,) BOS (Gvil Engg) Chairman

Sem: V	ſ	Total Hours Distribution per week						
Total Credit: 3	Lecture (L): 3 Hrs	Tutorial/Activity (T/A): 0 Hrs Practi			tical (P) : 0 Hrs			
Subject Code:	BTCVE505T	Name of Subject: Advanced Surveying (Elective-I)						
	Examination Scheme							
Tertore	al Marlar	University	Minimum		Examination			
Intern	nal Marks:	Marks:	Passing Ma	rks:	Duration:			
30	Marks							
(15 Marks for sessional examination)		70 Marks 45 Mar		s	3 Hours			
(15 Marks fo	or Activity based)							

Course	Objective						
1	1 To impart knowledge of Advanced surveying methods.						
2	Develop skill to use advance surveying instruments and analyse data						
3	Understand different errors and elimination of errors						
4	To make aware of the use of modern surveying instruments for real life problems.						

Course	Course Outcome							
After co	After completion of syllabus student able to							
1.	Understand Remote Sensing, terms involved in Remote Sensing and its applications.							
2.	Apply drone and LiDAR technology for surveying							
3.	Process digital images and interpret images using different tools.							
4.	Understand Geographical concepts and terminology involved in GIS and its Applications.							
5.	Handle GPS and DGPS for surveying							

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2	1	3	-	-	-	-	1	-	1
CO2	3	2	2	1	3	-	-	-	-	-	-	1
CO3	2	2	2	1	2	-	-	-	-	1	-	1
CO4	3	2	2	1	3	-	-	-	-	-	-	1
CO5	3	2	2	1	3	-	-	-	-	-	-	1
		1	1 Low		2 Me	dium		3 H i	igh			

Unit No.1 Remote Sensing			
Details of Topic		otment of ours	Mapped with CO Number
	L	T/A	СО
Introduction and definition of remote sensing terms, remote sensing system, principles of remote sensing,	02		1
Interaction of EMR, Fundamentals of aerial photography, platforms and orbits,	02		1
Sensors,data products, principles of visual interpretation, principles and uses;	02		1
Thermal remote sensitize, microwave remote sensing.	02		1
	08		
Unit No.2 UAV Drone & LiDAR			
Details of Topic		otment of ours	Mapped with CO Number
	L	T/A	СО
Types of Drone and its applications	01		2
LiDAR Techniques and its types	02		2
Application of Drone Technology for large area mapping	02		2
Generation of 3D data from Drone/LiDAR and preparation of DSM,DTM and detailed contour maps	03		2
	08		

Details of Topic		otment of ours	Mapped with CO Number
	L	T/A	CO
Principles of interpretation of aerial and satellite images,	02		3
Equipments and aids required for interpretation,	02		3
Ground truth collection and verification, advantages of multi date and multi band images,	02		3
Digital image processing; introduction, image enhancementtechniques, digital image classification.	02		3
	08		
Unit No.4 Geographic Information System (GIS)			
Details of Topic		otment of ours	Mapped with CO Number
	L	T/A	CO
Geographic Information System (GIS)- Definition of GIS, Geographical concepts and terminology	02		4
Components of GIS, Data acquisition, Raster and vector formats, scanners and digitizers.	03		4
Advantages of GPS and GIS in the storage of the matic information extracted from remotely sensed image	03		4
	08		
Unit No.5 Global Positioning System (GPS) & Differential GPS			
Details of Topic		otment of ours	Mapped with CO Number
	L	T/A	СО
Introduction to navigation and positioning Geodesy;	01		5
Geospatial reference systems, overview of GPS;	01		5
DGPS Techniques Post Process Kinematic and Real Time Kinematic technique.	02		5
DGPS Triangulation and closing techniques	02		5
Advance DGPS applications	02		5
	08		

			References					
Applicable		Name of			Category			
for Unit No.	Name of Book	Author	Name of Publisher	Edition	Text Book	Research paper	Reference book	
I	Remote Sensing and Geographical Information Systems	M. Anji Reddy			Y			
I,III, IV, V	Advanced Surveying: Total Station, GPS,	GopiSatheesh, R.Sathikumar, N Madhu	Pearson	2017	Y			

	GIS & Remote Sensing					
II	Fundamentals of Capturing and Processing Drone Imagery and Data	Amy E Frazier, Kumar K Singh	CRC Press			Y
IV	Concepts and techniques of Geographic Information Systems.	- C.P LO Albert KW Yeung,	Pritince Hall of India	Edition 2002	Y	

Censes 4: Ronde

Ser 4000

(Dr. A.N. Dabhade) Bos Member

43-2 (Dr. Avinash N Shrikhande,) BOS (Gvil Eugg) Chairman

Sem: V	Total Hours Distribution per week 3-0-0							
Total Credit: 03	Lecture (L): 03 Hrs	Tutorial/Activity (T/A): 0 Hrs. Practical (I			l (P): 0 Hrs.			
Subject Code	BTCVE506T	Name of Subject: A	ucture (Elective-II)					
Examination Scheme								
Internal Marks:		University Marks:	Minimum Passing		Examination			
			Marks:		Duration:			
30 Marks								
(15 Marks for sessional examination) (15 Marks for Activity based)		70 Marks	45 Marks		04 Hours			

Course	Objective
1	To understand the design concepts and learning various codes related to advanced
	reinforced concrete structure.
2	To understand the structural behavior of steel and concrete.
3	To apply conventional methods for design structural components of building.

Course	Course Outcome					
After co	After completion of syllabus student able to					
1	1 Understand the behaviour and failure modes of different RC structural members					
2	Analyze and apply the results in designing various RC structural members.					
3	Apply the knowledge and skills in practical problems					
4	Understand the relevant software and use the same in the analysis and design of RC members.					

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Subject Code &CO NO.												
CO1	3	3	3	-	-	-	-	-	-	2	-	3
CO2	3	3	3	-	-	-	-	-	-	2	-	3
CO3	3	3	3	-	-	-	-	-	-	2	-	3
CO4	3	3	3	-	-	-	-	-	-	2	-	3
Avg CO	3	3	3	-	-	-	-	-	-	2	-	3
		1	Low		2 Med	lium		3 Hi	gh			

Details of Topic		otment of ours	Mapped with CO Number
	L	T/A	СО
Design of RC columns subjected to biaxial moments.	09		
Design of Isolated footing, for axial load & uniaxialmoment.(square,			1
rectangular footing)			
	09		
Unit No.2	1		
Design of circular water tank resting on ground by IS code method (IS	09		
3370:2021). Design of Dog-legged and Open well Staircase			2
	09		
Unit No.3			
Design of RCC Cantilever and Counter fort Retaining wall.	09		
			3
	09		
Unit No.4	•		
Analysis and design of portal frames (single bay single storey) hinged	09		
or fixed at base. Design of hinge connection at base			
Design of combined footing. Rectangular / Trapezoidal.			4
	09		

- 1. DevdasMenon, Structural Analysis, Narosa Publishing House, 2008. (ISBN: 9781842653371)
- 2. Hibbeler, R. C. (2002). Structural Analysis, 6/e, Pearson Education
- 3. Norris, C.H., Wilbur, J.B., and Utku, S., Elementary Structural Analysis, McGraw Hill
- 4. Wang, C.K., Intermediate Structural Analysis, McGraw Hill, 1983

	List of Code/Handbook		
Applicable for Unit No.	Title of Code	Type of code	Year of Publication
All	IS 459-2000		2000
All	SP-16		

Custes 4. Ronde

(Dr. A.N. Dabhade) BOS Memb

(Dr. Avinash N Shrikhande,) BOS (Gvil Engg) Chairman

Sem: V	To	Total Hours Distribution per week								
Total Credit: 3	Lecture (L): 3 Hrs	Tutorial/Activity: 0 Hrs Practical (P): 0 Hrs								
Subject Code	BTCVE506T	Name of Subject: Earth Retaining Structures								
		(Elective-II)								
Examination Scheme										
Intern	al Marks:	University	Minimu	m	Examination					
		Marks:	Passing Ma	arks:	Duration:					
30	Marks									
	ssional Examination) r Activity based)	70 Marks	45 Mark	KS .	3 Hours					

Course	Objective
1	To know the in-depth knowledge of various failures mechanism related to earth retaining structures.
2	To understand the types of retaining wall, stability of retaining walls.
3	To understand sheet pile and cofferdam, method of construction and distribution of earth pressure.
4	To understand the historical failures of geotechnical structures.
5	To understand the effect of water table on slopes.

Course	Course Outcome					
After completion of syllabus student able to						
1	Think logically for mechanism of earth retaining structures.					
2	Differentiate different types of retaining wall and Understand the engineering concepts of stability of retaining walls.					
3	Understand about sheet pile and cofferdam and best suitable techniques for construction.					
4	Gain an experience in from historical failures of geotechnical structures.					
5	Gain the knowledge of effect of water table on slopes.					

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	3	2	-	-	1	1	1	1	-	-	2
CO2	2	2	2	2	-	1	1	1	1	1	2	2
CO3	3	3	2	2	1	1	1	1	2	1	1	2
CO4	3	3	2	1	-	1	1		-		-	2
CO5	1	2	2	-	-	-		-	-	-	-	2
Avg	2.2	2.6	2	1.67	1	1	0.8	1	1.3	`	1.5	2
	•		l Low	•	2 Mec	lium		3 Hig	h		•	•

Details of Topic	Allot 0 Ho	f	Mapped with CO Number	
	L	T/A	СО	
UNIT NO.1 Earth Pressure Theories				
Theories of earth pressure, general and local states of plastic	01		1	
equilibrium,				
Active and Passive states in cohesive and cohesion less soil,	03		1	
Rankine's and Coulomb's approaches,				
Effect of wall movement, uniform surcharge, wall angle, wall	03		1	
friction, back fill slope. Lateral pressure on wall due to				
concentrated construction, Culmanns method, earth pressure				
at rest.				
Introduction to seismic design of retaining wall.	01		1	
	08			
UNIT NO.2 Stability of Earth Retaining Structures				
Types of retaining wall, stability analysis of rigid type and R.C.	03		2	
Cantilever type retaining walls.				
Introduction of Geo reinforce Wall, Gabion Wall, Soil Nailing.	03		2	
	06			

References		
UNIT NO.3 Sheet Pile and Cofferdam		
Sheet pile and cofferdam. Type, material, method o construction.	f 02	3
Distribution of earth pressure and related approximation. Distinction between Sheet Pile and Retaining Wall, Analysis and Design.	05	3
	07	
UNIT NO.4 Characterization of failures & Stability Of Slopes	f	
Historical Failures of geotechnical structures(finite and infinite slopes, high embankments such as earthen dams, tunnels, excavations, Rockfall, landslides and retaining structures etc.,)	03	4
Stability Of Slopes- Causes and types of slope failure, stability analysis of infinite slopes and finite slopes, center of critical slip circle, slices method and friction circle. Slopes with pore pressure consideration. Taylor's stability numbers & stability charts, method of improving stability of slopes.	04	4
	07	
UNIT NO.5 Effect of water table on slopes		
Effect of water table on slopes, tension cracks, Stability of earth dams during different stages-during and at end of construction.	04	5
Steady seepage, Sudden draw down, estimation of pore water pressure, Use of stability charts.	04	5
	08	

Applicable	Name of	Name of	Name of			Category	7
for Unit No.	Book	Author	Publisher	Edition	Text Book	Research paper	Reference book
1,2,3,4,5	Basic and Applied Soil Mechanics	Gopal Ranjan and Rao	New Age Internation al Publisher	2005	Text Book		
1,2,3,4,5	Principles of Geotechnical Engineering	Das B.M.	Thomso n Bksm Cengag e Publicat ion	2002	Text Book		
1,2,3,4,5	Soil Mechanics and Foundation Engineerin g, Vol-I	VNS Murthy	Saikripa Consultan, Banglore	1991	Text Book		
1,2,3,4,5	Foundation Engineering Handbook	Winterkon H.F. and Fang H					Reference Book

	List of		
	Code/Handbook		
Applicable	Title of	Type of	Year of
for Unit No.	Code	code	Publication
1	Indian Standard Ports And Harbours - Plasning And Design - Code Of Practice Part 2 Earth Pressures (First Revision)	Indian Standard	Reaffirmed 2005
2	Indian Standard. Retaining Wall For Hill Area - Guidelines Part 2 Design Of Retaining/Breast Walls	Indian Standard	October 1997
3	Indian Standard Safety Code For Piling And Other Deep Foundations	Indian Standard	August 1969
4	IndianStandardSelectionAndDevelopmentOf SiteFor BuildingIn HillAreas - GuidelinesPart 2 SelectionAndDevelopment.	Indian Standard	March 1995

Applicable for	Website address
Unit No.	
1	https://nptel.ac.in/content/storage2/courses/105101083/download/lec7.pdf
2	https://nptel.ac.in/content/storage2/courses/105101083/download/lec26.pdf
3	https://documents.pub/document/advanced-foundation-engineering nptelacin-
5	3-chapter-5-sheet-pile-wall-51.html
4	https://nptel.ac.in/content/storage2/courses/105101001/downloads/L22.pdf
5	https://nptel.ac.in/content/storage2/courses/105101001/downloads/L22.pdf

Andret (Dr. A.N. Dashade) Bos Member

(Dr. Avinash N Shrikhande,) BOS (Gvil Engg) Chairman

Sem: V	Total Hours Distribution per week							
Total Credit: 3	Lecture (L): 03 Hrs	Tutorial/Activity (T/A): 0 Hrs.				tical (P): 0 Hrs.		
Subject Code	BTCVE506T	CVE506T Name of Subject: Climate Change and its Mitigation (Elective-II)						
	Examination Scheme							
Inter	nal Marks:		Marks:	Minimum Passing Marks:		Examination Duration:		
30 Marks								
(15 Marks for sessional examination) (15 Marks for Activity based)			70 Marks	45 Mark	KS	3 Hours		

Course	Objective
1	Students should be able to get knowledge about Climate system, its changes and
1	causes
2	Students should able to learn about Green house gases and its chemistry, sources,
<u>_</u>	effects & instruments used for quantification
3	Students should able to learn about the impacts of global climate change
4	Provide the knowledge of clean technology and alternate energy sources
5	To introduce the students about the mitigation of climate change

Course	Course Outcome							
After cor	npletion of syllabus student able to							
1	To be able to understand the problem of economics of energy – environmental interaction with respect to global climate change							
2	To be in a position to analysis Green house effect							
3	To be in a position to analyze impact of climate change							
4	To be in a position to understand the clean technology and alternate energy sources							
5	To demonstrate in producing research/project report on mitigation strategies for global climate change.							

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	2	2	1	-	-	-	1	1	2	2
CO2	2	2	2	2	1	-	-	-	1	2	2	2
CO3	2	2	2	1	1	-	-	-	1	1	2	2
CO4	2	2	2	1	1	-	-	-	1	2	2	2
C05	2	2	2	1	1	-	-	-	1	1	2	2
AVG	2	2	2	1.4	1	-	-	-	1	1.4	2	2

1 Low

3 High

SYLLABUS

2 Medium

Details of Topic		ours	Mapped with CO Number
•	L	T/A	СО
Introduction to Climate Change; History and Trends of Climate	02		
Atmosphere – weather and Climate	01		
Causes of global and regional climate change	01		1
climate parameters – Temperature, Rainfall, Humidity	01		1
Wind – Global ocean circulation and its effect	01		
Carbon cycle	01		
	07		
Unit No.2 Greenhouse Gases			
Details of Topic		ment of ours	Mapped with CO Number
			with CO
	Н	ours	with CO Number
Details of Topic	H	ours	with CO Number
Details of Topic Introduction and effect of Carbon dioxide, methane, nitrous oxide,	H	ours	with CO Number
Details of Topic Introduction and effect of Carbon dioxide, methane, nitrous oxide, water vapor, ozone and chlorofluorocarbons	H L 02	ours	with CO Number
Details of Topic Introduction and effect of Carbon dioxide, methane, nitrous oxide, water vapor, ozone and chlorofluorocarbons Chemistry of greenhouse gases	H L 02 01	ours	with CO Number CO
Details of Topic Introduction and effect of Carbon dioxide, methane, nitrous oxide, water vapor, ozone and chlorofluorocarbons Chemistry of greenhouse gases Sources and sinks, their cycle in atmosphere	H L 02 01 01	ours	with CO Number CO
Details of Topic Introduction and effect of Carbon dioxide, methane, nitrous oxide, water vapor, ozone and chlorofluorocarbons Chemistry of greenhouse gases Sources and sinks, their cycle in atmosphere Radiative forcing	H L 02 01 01 01	ours	with CO Number CO

Details of Topic		ment of ours	Mapped with CO Number
	L	T/A	CO
Impacts of Climate Change on various sectors – Agriculture, Forestry	02		
Methods and Scenarios, changes in agricultural production	02		
Impact on Human Health, Industry and society	01		3
Spread of epidemics and Risk of Irreversible Changes.	01		
Traditional practices to cope with climate change impacts	01		
	07		
Unit No.4 Waste to Energy, Clean Technologies and Greener Fuels			
Details of Topic :		ment of ours T/A	Mapped with CO Number CO
Later duction to MSW & Dis master Dismodial Inductrial maste	02	1/A	tu
Introduction to MSW & Bio waste, Biomedical, Industrial waste, International and Regional cooperation.	02		
Alternate Energy: Hydrogen, CBS, Bio-fuels, Solar Energy, Wind, Hydroelectric Power	02		
Examples of future Clean Technologies, Biodiesel, Natural Compost, Eco- Friendly Plastic	02		4
Study of waste to energy projects	01		
	07		
Unit No.5 Climate Change Mitigation		11	
Details of Topic	Allotment of Hours		Mapped with CO Number
	L	T/A	CO
Climate change response measures: definition and evolution	02	-	
Introduction to mitigation of GHGs and stabilization scenario	01		
characteristics of mitigation in regional and national context	01		5
mainstreaming climate change in development agenda	01		e
short-term mitigation options Role of fossil fuels in climate change	01		
Role of Governments, industries, and individuals	01	4	
	07		

	References								
Applicable	Name of Book	Name of Author	Name of Publisher	Edition	Category				
for Unit No.					Text Book	Researc h paper	Reference book		
1	Essentials of the Earth's Climate System	Roger G. Barry & Eileen A. Hall-McKim	Cambridge University Press	1st	Text Book				
2,3	Climate Change and Greenhouse	Pratap Bhattachary ya(Author),S	CRC Press	1st	Text Book				

2,3,4	Gases Emissions Global Climate	ushmitaMun da&Pradeep Kumar Dash Suruchi	Elsevier	1st	Text	
,,.	Change	Singh, Pardeep Singh, S. Rangabhashi yam, K.K. Srivastava			Book	
1,2,3	Implementing the climate regime	Jon Hovi, Olav Stokke and GeirUlfstein	International compliance, Earthscan	2005	Text Book	
5	Energy Systems and Sustainability: Power for a Sustainable Future	G Boylr, B Everest, J Ramage	Oxford	2003	Text Book	
6	Climate change and it's control	Dr. R.N.Patil, Dr. R.M. Dhoble, Dr. A. M. Bhamburkar	Book Rivers Publication ISBN: 978-93- 5515-329-6	2022	Text Book	

	List of Code/Handbook						
Applicable for Unit No.	Title of Code	Type of code	Year of Publication				
1,2	Climate change and carbon markets : a handbook of emission reduction mechanisms, Earthscan by F. Yamin		2005.				
1,2,3,4	Handbook of Climate Change and India by Navroz K. Dubash		2011				
2,3,5	Handbook of Climate Change Management by Walter Leal Filho, Johannes M. Luetz&Dr.DesalegnYayehAyal published by Springer		2021				

Applicable for Unit No.	Website address
1,2,3	Climate Change 2007: Impacts, Adaptation and Vulnerability, Summary for Policymakers, IPCC. Available at: http://www.ipcc.ch/SPM13apr07.pdf
4,5	Climate Change 2007: Mitigation of Climate Change, Summary for Policymakers, IPCC. Available at: http://www.ipcc.ch/SPM040507.pdf
1,2,3	Climate Change, The Physical Science Basis, IPCC. Available at: <u>http://ipccwg1</u> . ucar.edu/wg1/wg1-report.html

America (Dr. A.N. Dashade) Bos Member

2 20 (Dr. Avinash N Shrikhande,) BOS (Gvil Engg) Chairman

Sem: V	Total Hours Distribution per week							
Total Credit: 3	Lecture : 3 Hours	Tutorial//Activity (T/A): 0 Hrs	Practical (P): 0 Hrs					
Subject Code:-	BTCVE506T	Subject: - Advanced Concrete Technology (Elective-						
	Examination Scheme							
Internal Mark	s- University	Minimum Passing Marks:	Examination Duration:					
30 Marks								
(l5marks. for session Examination)	al 70 Marks	45 Marks	3 Hours					
(15 Marks for Activ based)	rity							

Course	Course Objectives							
1	To know different types of cement as per their properties for different field applications, properties of Aggregates and Admixture							
2	To understand the knowledge of Special Concrete To know tests on concrete in plastic and hardened stage as well as behavior of concrete structure							
3	To understand Design economic concrete mix proportion for different exposure conditions and intended purpose.							
4	To understand the behavior and strength of concrete structure.							
5	To understand the concept of durability and testing of concrete							

Course	Outcomes							
After	After completion of syllabus, students would be able to							
1	Think logically for development Concrete technology application in field of Civil Engineering							
2	Differentiate special concrete from conventional concrete Gain an experience in the implementation of Concrete Materials on Engineering concepts which are applied on Construction Fields							
3	Understand the process of mix design of concrete.							
4	Gain an experience in the implementation of Concrete Materials on							
	Engineering concepts which are applied on Construction Fields.							
5	To Understand the various factors affecting the concrete and Advanced Non- Destructive Testing Methods.							

MAPPING	OF CO	WITH PO
---------	-------	---------

CO/ P0	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
C 01	2	3	2	-	-	1	1	1	1	-	-	2
C 02	2	2	2	2	-	1	1	1	1	1	2	2
C 03	3	3	2	2	1	1	1	1	2	1	1	2
C 04	3	3	2	1	-	1	1		-		-	2
CO5	1	2	2	-	-	-		-	-	-	-	2
AVG.	2.2	2.6	2.00	1.00	0.2	0.8	0.8	0.75	1	0.5	0.75	2.00

1 Low 2 Medium

3 High

Details of Topic		ment :s	Mapped with CO Number	
	L	T/A	со	
UNIT NO.1 INTRODUCTION TO CONCRETE				
Historical background, composition of concrete, general note on strength mechanism, recent practice and future trends	01		1	
Cement - Chemical composition, hydration, heat of hydration, hydrated structure, various types of cement, grades of cement, testing, Hydration Process and Hydrated Cement Paste of blended cement, of cement as per Indian standard.	03		1	
Aggregates - Utility in concrete, classification, effect of geometry & texture, strength, mechanical properties, moisture content, water absorption, bulking of sand, deleterious substances, sieve analysis, various grading and grading requirements	03		1	
Water - General Requirements & limiting values of impurities	01		1	
	08			
UNIT NO.2 SPECIAL CONCRETE AND CONCRETING TECHNIQUES				
 a)Concrete with difference cementatious materials: fly ash, GGBS, Silica fume. b) Concrete with different Aggregates: No fines, high weight, gap graded, Recycled Aggregate,Auto clave aerated concrete. 	03		2	
 c) Modified property: high density, high performance, ultra rapid hardening concrete, transportation concrete, Fiber reinforcement concrete. d) Techniques: RMC, Underwater concrete, Shot crete, nano concrete. 	03		2	
	06			

UNIT NO.3 DESIGN OF CONCRETE		
Concept of Design of concrete, Quality control (field and statistical)	02	3
Indian Standard Method, Comparison with		
British and .American Method of Mix Design. Acceptance criteria		
Design of High Strength Concrete Mixes, Design of Light Weight	05	3
Aggregate Concrete Mixes, Design of Fly Ash		
Cement Concrete Mixes, Design of High Density Concrete Mixes,		
Standards, Specifications and Code of Practice.		
	07	
UNIT NO.4 BEHAVIOR AND STRENGTH OF CONCRETE		
Failure modes in concrete, type deformation stress strain relation	04	4
and modulus of elasticity,		
Shrinkage cause, Factors Affecting and control, creep, causes,		
Factores influencing and effects. Effects of temperature.		
Compressive strength, Tensile strength, Fatigue strength, and impact		
strength, Factors influencing strength of concrete	03	4
strength, I detors influencing strength of coherete	~ -	
	07	
UNIT NO.5 DURABILITY AND TESTING OF		
CONCRETE		
Water As An Agent Of Deterioration, Permeability Of Concrete, Classification of Causes of Concrete Deterioration, Deterioration By	04	5
Surface Wear/Abrasion, Freezing And Thawing of Concrete, Alkali- Aggregate Reaction (Alkali-Silica Reaction / Alkali-Carbonate Reaction),		
Deterioration By Fire, Guide To Durable Concrete		
Advanced Non-Destructive Testing Methods: Ground Penetration Radar,		
Probe Penetration, Pull Out Test, Break off Maturity Method, Stress Wave	04	5
Prorogation Method, Electrical/Magnetic Methods, Nuclear Methods And		
Infrared Thermograph, Core Test		
	08	

References								
Applicable	Name of	Name of	Name of	Edition	Category			
for Unit No.	Book	Author	Publisher		Text Book	Research paper	Reference book	
1&2	Concrete	MS Shetty;	S.Chand		Text			
	Technology		Publication		Book			
			New Delhi					
3	Concrete	PKumar	Indian		Text			
	Technology	Mehta,	Concrete		Book			
			Institute					
4&5	Properties	AM.Neville	Pearson		Text			
	Of Concrete		Education		Book			
3	Concrete	ML	Tata McGraw		Text			
	Technology	Gambhir;	Hill		Book			

3	Concrete mix design for flyash and superplasticiz er	Kishore kaushal	ICI bulletin	Apr- june 1997	Researc hpaper
---	--	--------------------	--------------	----------------------	-------------------

	List of Code/Handbook						
Applicable for Unit No.	Title of Code	Type of code	Year of Publication				
2	IS 269- 2013		2013				
	IS 516- 1959		1959				
2	IS 1786- 1985						
4	IS 3812 part 1	Specification of fly ash					
3	IS 10262 - 2009		2009				

Censes G. Ronze

406 (Dr. A.N. Dashade)

Bos Member

(Dr. Avinash N Shrikhande,) BOS (Gvil Engg) Chairman

It • f

Sem: V	Total Hours Distribution per week									
Total Credit: 03	Lecture (L): 3 Hrs	Tutorial/Activity (T	/A): 0 Hr.	Practical (P): 0 Hrs.						
Subject Code	BTCVE506T	Name of Subject: Flood Control and Drainage (Elective-II)								
	Examination Scheme									
Intern	al Marks:	University Marks:	Minimun	n Examination						
			Passing Mar	rks: Duration:						
30	Marks									
(15marks for sessi	onal Examination)	70 Marks	45 Marks	s 3 Hours						
(15 Marks for	r Activity based)									

Course	Course Objective							
This cou	urse will enable students to:							
1	Understand the Concept of Flood, its effect and Causes.							
2	Understand various methods of Flood Mitigation							
3	Understand clearly flood routine and its effect in flood management and control							
4	Understand the Problems of Drainage system in urbanization and apply the knowledge							
	in operation and maintenance of Urban drainage system.							
5	Familiarize with the concepts of systems for drainage of irrigation lands.							

Course Outcome						
After St	udying this course, Students will be able to:					
1	Understand the role and responsibility of engineers in Flood Mitigation.					
2	Understand the role and responsibility of engineers in Estimation of Design Flood					
3	Learn and apply the knowledge of GIS, remote Sensing in Natural Hazard Mitigation.					
4	Apply the Concept in Operation and Maintenance of Urban Drainage System.					
5	Apply the knowledge of pattern of Drainage system at Irrigation area.					

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
BECVE506 T CO1	3	2	2									2
BECVE506 T CO2	3	2	2	2								2
BECVE506 T CO3	3	2	3									2
BECVE506 T CO4	3	2	3									2
BECVE506 T CO5	3	2	3									2

1 Low

2 Medium

3 High

Unit No.1 Flood Engineering			
Details of Topic		otment of ours	Mapped with CO Number
	L	T/A	CO
Flood Engineering:	07		1
General:			
Introduction, Basics of floods, Natural and man-made floods, Flows in			
catchments, Causes of flooding, Environmental and economic losses,			
Flood control structures.			
FLOOD HAZARD MITIGATION: Flood management measures, Flood			
control strategies.			
	07		
Unit No.2 ESTIMATION OF DESIGN FLOOD: & FLOOD ROUTING THRO CHANNELS	UGH F	RESERV	OIRS AND
		otment	Mapped
Details of Topic		of ours	with CO Number
	L	T/A	CO
ESTIMATION OF DESIGN FLOOD:	08		2
Introduction, Methods of design flood computations: Observation of Highest Flood, Empirical flood formulae, Flood frequency studies- Gumbel's method– Design flood and design storm			

ISD method- Modified Pulse method. 08 Flood routing through channels – Muskingum method. 08 Unit No.3 Risk Management Details of Topic Allotment I T/A CO Risk Management: Risk assessment, Risk reduction and management, Advanced Warning Systems: Global positioning systems, Applications of remote sensing and GIS, Role of Information Technology in natural hazard mitigation management 07 3 Unit No.4 Drainage Engineering 07 I I Mapped with CO Number Details of Topic 07 I I T/A CO Drainage Engineering: I T/A CO Number Number I Number Land Drainage systems: necessity-types-surfaces and subsurface drainage-design considerations. 07 4 I I A CO Number I I/A CO I I I/A CO I I I/A CO I I I/A CO I/A I/	(FLOOD ROUTING THROUGH RESERVOIRS AND CHANNELS			
Flood routing through channels – Muskingum method. 08 Image: construct the second	Flood routing through reservoirs—general, basic principles of flood routing			
Image: constraint of the second state state of the second state state of the second state state and unsteady state approaches in the second state state state state state state approaches in the second state state state state approaches in the second state state state state state state approaches in the second state approaches in the second state state approaches in the second state state and unsteady state approaches in the second state	ISD method- Modified Pulse method.			
Image: constraint of the second state state of the second state state of the second state state and unsteady state approaches in the second state state state state state state approaches in the second state state state state approaches in the second state state state state state state approaches in the second state approaches in the second state state approaches in the second state state and unsteady state approaches in the second state	Flood routing through channels – Muskingum method.			
Unit No.3 Risk Management Mapped with CO Details of Topic Mapped with CO Risk Management: Risk assessment, Risk reduction and management, Advanced Warning Systems: Global positioning systems, Applications of remote sensing and GIS, Role of Information Technology in natural hazard mitigation management Of 3 Optimize Of I Statement, Global positioning systems, Applications of remote sensing and GIS, Role of Information Technology in natural hazard mitigation management Of I 3 Unit No.4 Drainage Engineering I Allotment of with CO Number Details of Topic Allotment of with CO Number Details of Topic Of 7 I T/A CO Drainage Engineering: I T/A CO Datails of Topic Allotment of with CO Number Mapped with CO Number L T/A CO Details of Topic Allotment of mainage Systems: Maintenance requirements and planning, Cleansing of sewers and drains, repair options, I				
Details of TopicAllotternt of HoursMapped with CO NumberLT/ACORisk Management:Risk assessment, Risk reduction and management, Advanced Warning Systems:073Advanced Warning Systems:Global positioning systems, Applications of remote sensing and GIS, Role of Information Technology in natural hazard mitigation management073Details of Topic07VVUnit No.4 Drainage EngineeringAllotternt of HoursMapped with CO NumberDetails of Topic $17/A$ CODrainage Engineering: L074Land Drainage systems: necessity-types-surfaces and subsurface drainage- design considerations.074Introduction to Drainage Problems in Different Climates: Urbanisation - Its effects and consequences for drainage.074Operation and Maintenance of Urban Drainage Systems: Maintenance requirements and planning, Cleansing of sewers and drains, repair options,071Details of Topic 07 07 07 07 07 Unit No.5 Patterns of drainage system 07 07 07 07 Details of Topic 07 07 07 07 Details of Topic 07 07 07 07 Drainage criteria formulation for off season drainage, crop season drainage, salt drainage- use of steady state and unsteady state approaches in 07 5		08		
Details of Topic $f = 0$ Numberwith CO NumberRisk Management:Risk assessment, Risk reduction and management, Advanced Warning Systems: Global positioning systems, Applications of remote sensing and GIS, Role of Information Technology in natural hazard mitigation management073Unit No.4 Drainage Engineering07 I I Details of Topic $II \cup IIII \cup IIII \cup IIII \cup IIIIIIIIIIII$	Unit No.3 Risk Management			
Details of Topic Hours Number L T/A CO Risk Management: Risk assessment, Risk reduction and management, 07 3 Advanced Warning Systems: Global positioning systems, Applications of remote sensing and GIS, Role of Information Technology in natural hazard mitigation management 07 1 Unit No.4 Drainage Engineering 07 1 1 Details of Topic Allotment of Hours Mapped with CO Number L T/A CO Drainage Engineering: 1 T/A CO Land Drainage systems: necessity-types-surfaces and subsurface drainage-design considerations. 07 4 Introduction to Drainage Problems in Different Climates: Urbanisation - Its effects and consequences for drainage. 07 4 Unit No.5 Patterns of drainage system 07 1 1 Details of Topic III thoo Allotment of with CO Number Mapped with CO Number Drainage criteria formulation for off season drainage, crop season drainage, salt drainage- use of steady state and unsteady state approaches in approa		Allo	otment	
L T/A CO Risk Management: Risk assessment, Risk reduction and management, 07 3 Advanced Warning Systems: Global positioning systems, Applications of remote sensing and GIS, Role of Information Technology in natural hazard mitigation management 07 3 Unit No.4 Drainage Engineering 07 07 07 Details of Topic Allotment of Hours Mapped with CO Number Number L T/A CO Number 4 Data Drainage Engineering: 07 4 4 Land Drainage Systems: necessity-types-surfaces and subsurface drainage-design considerations. 07 4 Land Drainage Problems in Different Climates: Urbanisation - Its effects and consequences for drainage. 07 4 Operation and Maintenance of Urban Drainage Systems: Maintenance requirements and planning, Cleansing of sewers and drains, repair options, 07 10 Unit No.5 Patterns of drainage system 07 10 10 Unit No.5 Patterns of drainage system 07 10 10 Details of Topic 07 10 10 10 Drainage criteria formulation for off season drainage, crop season drainage, salt drainage- use of steady state and unsteady state app	Details of Topic			
Advanced Warning Systems: Global positioning systems, Applications of remote sensing and GIS, Role of Information Technology in natural hazard mitigation management 07 Unit No.4 Drainage Engineering 07 Details of Topic Allotment of Hours Data Drainage Engineering: Allotment of Hours Data Drainage Engineering: Vint No.4 Drainage Engineering: L T/A CO O7 Jund Drainage Systems: necessity-types-surfaces and subsurface drainage-design considerations. 07 Introduction to Drainage Problems in Different Climates: Urbanisation - Its effects and consequences for drainage. 07 Operation and Maintenance of Urban Drainage Systems: Maintenance requirements and planning, Cleansing of sewers and drains, repair options, 07 Unit No.5 Patterns of drainage system 07 5 Details of Topic 07 5				
Advanced Warning Systems: Global positioning systems, Applications of remote sensing and GIS, Role of Information Technology in natural hazard mitigation management 07 I Unit No.4 Drainage Engineering Mapped with CO Details of Topic $AII \cup ment$ of Hours Mapped with CO Data of Topic $AII \cup ment$ of Hours Mapped with CO Drainage Engineering: 07 4 Land Drainage systems: necessity-types-surfaces and subsurface drainage- design considerations. 07 4 Introduction to Drainage Problems in Different Climates: Urbanisation - Its effects and consequences for drainage. 07 4 Operation and Maintenance of Urban Drainage Systems: Maintenance requirements and planning. Cleansing of sewers and drains, repair options, 07 1 Unit No.5 Patterns of drainage system Details of Topic $II = II/A$ CO Patients of drainage system- Drainage criteria formulation for off season drainage, crop season drainage, salt drainage- use of steady state and unsteady state approaches in $II = II/A$ CO	Risk Management: Risk assessment. Risk reduction and management.	07		3
remote sensing and GIS, Role of Information Technology in natural hazard mitigation management $ \begin{array}{c c c c c c c c c c c c c c c c c c c $				
mitigation management 07 Unit No.4 Drainage Engineering Details of Topic Details of Topic Image Engineering: Land Drainage Engineering: Land Drainage systems: necessity-types-surfaces and subsurface drainage-design considerations. Introduction to Drainage Problems in Different Climates: Urbanisation - Its effects and consequences for drainage. Operation and Maintenance of Urban Drainage Systems: Maintenance requirements and planning, Cleansing of sewers and drains, repair options, Unit No.5 Patterns of drainage system Details of Topic Image Additionage Systems Patterns of drainage system- Drainage criteria formulation for off season drainage, crop season drainage, salt drainage- use of steady state and unsteady state approaches in				
07 07 Unit No.4 Drainage Engineering Mapped with CO Details of Topic Mapped with CO L T/A CO Drainage Engineering: 07 4 Land Drainage systems: necessity-types-surfaces and subsurface drainage-design considerations. 07 4 Land Drainage Problems in Different Climates: Urbanisation - Its effects and consequences for drainage. 07 4 Operation and Maintenance of Urban Drainage Systems: Maintenance requirements and planning, Cleansing of sewers and drains, repair options, 07 4 Unit No.5 Patterns of drainage system Details of Topic Mapped with CO Patterns of drainage system- Drainage criteria formulation for off season drainage, crop season drainage, salt drainage- use of steady state and unsteady state approaches in 07 5				
Unit No.4 Drainage EngineeringMapped with CO NumberDetails of TopicMapped with CO 	mitigation management			
Details of Topic Allotment of Hours Mapped with CO Number L T/A CO Drainage Engineering: 07 4 Land Drainage systems: necessity-types-surfaces and subsurface drainage- design considerations. 07 4 Introduction to Drainage Problems in Different Climates: Urbanisation - Its effects and consequences for drainage. 07 4 Operation and Maintenance of Urban Drainage Systems: Maintenance requirements and planning, Cleansing of sewers and drains, repair options, 07 4 Unit No.5 Patterns of drainage system 07 07 5 Details of Topic I I/A CO Patterns of drainage system- Drainage criteria formulation for off season drainage, crop season drainage, salt drainage- use of steady state and unsteady state approaches in 07 5		07		
Details of Topic of Hours with CO Number L T/A CO Drainage Engineering: 07 4 Land Drainage systems: necessity-types-surfaces and subsurface drainage- design considerations. 07 4 Introduction to Drainage Problems in Different Climates: Urbanisation - Its effects and consequences for drainage. 07 4 Operation and Maintenance of Urban Drainage Systems: Maintenance requirements and planning, Cleansing of sewers and drains, repair options, 07 07 Unit No.5 Patterns of drainage system 07 07 10 Details of Topic $\frac{10}{Number}$ $\frac{Mapped}{With CO}$ Number Drainage criteria formulation for off season drainage, crop season drainage, salt drainage- use of steady state and unsteady state approaches in 07 5	Unit No.4 Drainage Engineering			
Details of Topic Hours Number L T/A CO Drainage Engineering: 07 4 Land Drainage systems: necessity-types-surfaces and subsurface drainage- design considerations. 07 4 Introduction to Drainage Problems in Different Climates: Urbanisation - Its effects and consequences for drainage. 07 4 Operation and Maintenance of Urban Drainage Systems: Maintenance requirements and planning, Cleansing of sewers and drains, repair options, 07 4 Unit No.5 Patterns of drainage system 07 1 1 Details of Topic $\frac{All \cup ment}{Mapped}$ with CO Number Mapped of the Urs Mapped with CO Number Data for the Drainage system- patinage criteria formulation for off season drainage, crop season drainage, salt drainage- use of steady state and unsteady state approaches in 07 5		Allo	otment	
LT/ACODrainage Engineering:074Land Drainage systems: necessity-types-surfaces and subsurface drainage- design considerations.074Introduction to Drainage Problems in Different Climates: Urbanisation - Its effects and consequences for drainage.14Operation and Maintenance of Urban Drainage Systems: Maintenance requirements and planning, Cleansing of sewers and drains, repair options,076Unit No.5 Patterns of drainage system071Details of TopicAllotment of HoursMapped with CO NumberDrainage criteria formulation for off season drainage, crop season drainage, salt drainage- use of steady state and unsteady state approaches in075	Details of Topic			
Dramage Engineering:IILand Drainage systems: necessity-types-surfaces and subsurface drainage- design considerations.IIIntroduction to Drainage Problems in Different Climates: Urbanisation - Its effects and consequences for drainage.IIOperation and Maintenance of Urban Drainage Systems: Maintenance requirements and planning, Cleansing of sewers and drains, repair options,07IUnit No.5 Patterns of drainage system07IMapped with CO NumberDetails of TopicIT/ACOPatterns of drainage system- Drainage criteria formulation for off season drainage, crop season drainage, salt drainage- use of steady state and unsteady state approaches in075				
design considerations. Introduction to Drainage Problems in Different Climates: Urbanisation - Its effects and consequences for drainage. Introduction to Drainage Problems in Different Climates: Urbanisation - Its effects and consequences for drainage. Operation and Maintenance of Urban Drainage Systems: Maintenance requirements and planning, Cleansing of sewers and drains, repair options, 07 Unit No.5 Patterns of drainage system 07 07 Details of Topic Allotment of with CO Number Mapped with CO Number L T/A CO Patterns of drainage system- 07 5 Drainage criteria formulation for off season drainage, crop season drainage, salt drainage- use of steady state and unsteady state approaches in 07 5	Drainage Engineering:	07		4
effects and consequences for drainage.Image: Clean brainage Systems: Maintenance requirements and planning, Clean brainage Systems: Maintenance requirements and planning, Clean brainage Systems: Maintenance of Urban Drainage Systems: Maintenance requirements and planning, Clean brainage system07Image: Mapped with COUnit No.5 Patterns of drainage systemDetails of Topic $Allorment of flow with CONumberImage: Clean brainage systemOf Patterns of drainage systemOf TACOPatterns of drainage system-Of SDrainage criteria formulation for off season drainage, crop season drainage, salt drainage- use of steady state and unsteady state approaches in$	Land Drainage systems: necessity-types-surfaces and subsurface drainage- design considerations.			
requirements and planning, Cleansing of sewers and drains, repair options,00707Unit No.5 Patterns of drainage systemDetails of TopicDetails of Topic $Allotment of Mapped with CO NumberLT/ACOPatterns of drainage system-075Drainage criteria formulation for off season drainage, crop season drainage, salt drainage- use of steady state and unsteady state approaches in075$	Introduction to Drainage Problems in Different Climates: Urbanisation - Its effects and consequences for drainage.			
requirements and planning, Cleansing of sewers and drains, repair options,00707Unit No.5 Patterns of drainage systemDetails of TopicDetails of Topic $Allotment of Mapped with CO NumberLT/ACOPatterns of drainage system-075Drainage criteria formulation for off season drainage, crop season drainage, salt drainage- use of steady state and unsteady state approaches in075$	Operation and Maintenance of Urban Drainage Systems: Maintenance			
Unit No.5 Patterns of drainage systemAllotment of NumberMapped with CO NumberDetails of Topic $I = I = I = I = I = I = I = I = I = I =$				
Details of Topic $Allotment of with CO Number$ Mapped with CO NumberLT/ACOPatterns of drainage system-075Drainage criteria formulation for off season drainage, crop season drainage, salt drainage- use of steady state and unsteady state approaches inI		07		
Details of TopicAllotment of HoursMapped with CO Number L T/ACOPatterns of drainage system- Drainage criteria formulation for off season drainage, crop season drainage, salt drainage- use of steady state and unsteady state approaches in075				
Details of Topic $of \\ H \cup urs$ with CO NumberLT/ACOPatterns of drainage system- Drainage criteria formulation for off season drainage, crop season drainage, salt drainage- use of steady state and unsteady state approaches in075	Unit No.5 Patterns of drainage system			
Details of Topic Hours Number L T/A CO Patterns of drainage system- 07 5 Drainage criteria formulation for off season drainage, crop season drainage, salt drainage- use of steady state and unsteady state approaches in I I				
Patterns of drainage system- 07 5 Drainage criteria formulation for off season drainage, crop season drainage, salt drainage- use of steady state and unsteady state approaches in 607 5	Details of Topic	H	ours	Number
Drainage criteria formulation for off season drainage, crop season drainage, salt drainage- use of steady state and unsteady state approaches in			T/A	
salt drainage- use of steady state and unsteady state approaches in	Patterns of drainage system-	07		5
	Drainage criteria formulation for off season drainage, crop season drainage,			
formulation criteria for irrigated areaincorporation of intentional and	salt drainage- use of steady state and unsteady state approaches in			
	formulation criteria for irrigated areaincorporation of intentional and			

unavoidable losses		
	07	

Text Books:

- 1. S.N.Ghosh, Assitant Professor in Civil Engineering Department, IIT, Kharagpur.
- 2. H M Reghunath, Hydrology, New Age International (P) Limited, Publishers (1987)
- 3. Dr. P. Jayarami Reddy, A text book of Hydrology, Laxmi publications (2005)
- 4. Linsley .R.K, Kohler.M.A & Palhus.J.L, Applied Hydrology, Mc Graw Hill (1949)
- 5. Bhattacharya A K and Michael A M, Land Drainage Principles: Methods and Applications, Konark Publishers Pvt. Ltd., New Delhi, 2003.

Reference Book:

- 1. Centre for Science & Environment, Wrath of Nature: Impact of Environmental Destruction on Floods and Droughts, Centre for Science & Environment, New Delhi.
- Beven, K. and Carling, P., (eds.), Floods: Hydrological, Sedimentological and Geomorphological Implications, British Geomorphological Research Group Symposia Series, Wiley, Chichester, 1989.
- 3. B.H.R.A., Hydraulic Aspects of Floods & Flood Control, B.H.R.A., England, 1983.
- 4. Brown, J.P., Economic Effects of Floods, Springer-Verlag, Berlin, 1972.
- 5. Prasad, P., Famines and Droughts: Survival Strategies, Rawat, Jaipur, 1998.
- 6. A.K. Schwab, K. Eschelbach, David J. Brower, Hazard Mitigation and Preparedness, John Wiley, 2007.
- 7. Gribbin, J.E., 2014, Introduction to Hydraulics and Hydrology with Applications for Storm water Management, Cengage
- 8. Mays, L.W., 2001, Storm water Collection Systems Design Handbook, McGraw Hill
- 9. Butler and Davis, Urban Drainage, 3rd edition, 2010
- 10. Irrigation and Drainage paper 24. Crop water requirement. FAO, Rome, 1977.
- 11. Irrigation and Drainage paper 56. Crop water requirement. FAO, Rome, 1988.

Censes 4: Ronde Dr. A.N. Dashade) (Dr. Avinash N Shrikhande,) BOS (Gvil Engg) Chairman

Sem: V	Total Hours Distribution per week									
Total Credit: 3	Lecture (L): 3Hrs	Tutorial/Activity (T/A): 0 hrsPractical (P): 0 Hrs.								
Subject Code	BTCVE506T	Name of Subject: Railway Engineering (Elective-II)								
	Examination Scheme									
Intern	al Marks:	University Marks:	Minim Passing M		Examination Duration:					
(15 Marks for se	Marks ssional examination) r Activity based)	70 Marks	45 Ma	rks	3 Hours					

Course	Objective
1	Students should be able to explain and describe various terms in railway engineering.
2	Students should be able to explain, discriminate and design various geometric features of railway track.
3	Students should be able to define and describe the construction and maintenance steps of railway track.
4	Understand the influence of railway transportations in the society.
5	Understand the cooperation, interaction & philosophy of railway safety.

Course	Course Outcome							
After co	mpletion of syllabus student able to							
1	Explain Components of Railway Track, different Railway Gauges							
2	Design track Gradients as per given requirements							
3	Discuss various Types of Track Turnouts							
4	Explain Interlocking and modern signal system							
5	Describe Surface Defects on Railway Track and Their Remedial Measures							

			T	MAPPI		rco	** 1 1 1 1	10		-		
CO/PO	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO1 11	PO 12
Subject Code &CO												
CO1	3	3										
CO2	3	2										
CO3	3	3	2									
CO4	3	3	1									
CO5	3	2	2	1								
1 Low			2 Me	dium		3 H i	igh					

Unit No.1 Railways Terminology	Unit No.1 Railways Terminology								
Details of Topic	H	tment of ours	Mapped with CO Number						
	L	T/A	CO						
Railway track			1						
Gauge			1						
Alignment of railway lines	08								
Engineering surveys									
Construction of new lines,									
Tracks & track stresses			1						
	08								
Unit No.2 Rail Terminology	I								
Details of Topic		tment of ours	Mapped with CO Number						
		T/A	CO						
Rails, sleepers, Ballast			2						
Subgrade and formation			2						
Track fittings and fastenings	08								
Creep of rails	00								
Geometric design of track			2						
Curves and super-elevation			2						
	08								
Unit No.3 Points & Crossing	I								
Details of Topic		tment of ours	Mapped with CO Number						
Details of Topic		T/A	CO						
Points and crossings		1 /1 1	3						
Track junctions	08		~						

Simple track layouts			3
Rail joints and welding of rails			3
Track maintenance			
Track drainage			3
	08		
Unit No.4 Modernization of Railway Track			
Details of Topic		tment of ours	Mapped with CO Number
	L	T/A	CO
Modern methods of track maintenance			
Rehabilitation of track			4
Renewal of track Tractive resistance and power	- 08		
Railway stations			
Railway yards			
	08		
Unit No.5 Signalling & Control system			
	Allo	tment	Mapped
	of		with CO
		-	
Details of Topic	H	ours	Number
	L	T/A	CO
Railway tunnelling			5
Signalling			
Interlocking	08		
Modern development in railways	0		5
Development of high speed and super high speed railway track			5
Maintenance of railway tracks for high speed trains			5

	References								
Applicable	Nomo of	Name of Name of Name of			Category				
for Unit No.	Book	Author	Publisher	Edition	Text Book	Research paper	Reference book		
I,II,III, IV&V	Railway Engineering	Saxena and Arora, Dhanpat Rai& Sons	Dhanpat Rai& Sons	Ι	√	-			
I,II,III, IV&V	Railway Engineering	S.C.Rangawala	Charotar Publishing House Pvt. Ltd.	Ι	√	-			

III	Railway Tracks Engineering	J.S.Mundrey, Tata McGraw- Hill Publishing	Tata McGraw- Hill Publishing	Ι		-	V
-----	----------------------------------	---	---------------------------------------	---	--	---	---

Custos G. Ronde

. Ser ADE (Dr. A.N. Dashade) Bos Member

433 (Dr. Avinash N Shrikhande,) BOS (Gvil Engg) Chairman

RASHTRASANT TUKDOJI MAHARAJ NAGPUR UNIVERSITY, NAGPUR FACULTY OF SCIENCE & TECHNOLOGY SCHEME OF EXAMINATION & EVALUATION B. TECH CIVIL ENGINEERING (CHOICE BASED CREDIT SYSTEM) SEMESTER: SIXTH

Sr.	Subject	Subject	Workload in Hours			Credit			Marks				Minimum passing marks			
No	Code	Subject		T/A	Р		т	Б	Tatal	Theory		Prac	tical	Total	Theory	Dractical
			L	T/A	Р	L	1	Р	Total	Int	Uni	Int	Uni	Total	Theory	Practical
1	BTCVE601T	Estimating & Costing	3	1	0	3	1	0	4	30	70			100	45	
2	BTCVE601P	Estimating & Costing (Practical)	0	0	2	0	0	1	1			25	25	50		25
3	BTCVE602T	Construction Engineering & Management	2	1	0	2	1	0	3	30	70			100	45	
4	BTCVE603T	Water Resource Engineering	3	0	0	3	0	0	3	30	70			100	45	
5	BTCVE604T	Elective-III	3	0	0	3	0	0	3	30	70			100	45	
6	BTCVE605T	Open Elective-I	3	0	0	3	0	0	3	30	70			100	45	
7	BTCVE606P	Computer Aided Civil Engineering Drawing (Practical)	0	0	2	0	0	1	1			50	50	100		50
		TOTAL	14	2	4	14	2	2	18	150	350	75	75	650		

• L- Lecture, P-Practical, T- Tutorial, A- Activity (Half Credit per Hour)

Note: In summer vacation after 6th Semester, student have to complete 3 to 4 weeks industrial / Government / NGO / MSME / Rural Internship / Innovation / Entrepreneurship training. In the beginning of 7th semester, student have to submit detailed report of summer vacation training to department.

(Dr. A.N. Dashade) Ros Member

(Dr. Avinash N Shrikhande,) BOS (Gvil Engg) Chairman

Sem: VI		Total Hours Distribution per week								
Total Credit: 04	Lecture (L): 3 Hr	Lecture (L): 3 Hrs.Tutorial/Activity (T/A): 1 Hrs.Practical (P): 2 Hrs.								
Subject Code	BTCVE601T	Name of Subject: Estimating and Costing								
Examination Scheme										
Internal	Marks:	University Marks:	Minimum F	Passing	Examination					
			Marks	5:	Duration:					
30 M	arks									
(15marks for sessional Examination)		70 Marks	45 Mar	ks	4 Hours					
(15 Marks for A	Activity based)									

Course	Objective
1	To differentiate the types of Estimation, adopt specification and Unit Rates.
2	To analyse rates for different items of works.
3	To interpret the drawings and estimate the Quantities of various items in civil engineering structures.
4	To understand departmental procedures and Take measurement of completed work On successful completion of this course.
5	To understand different techniques of preliminary & detailed estimation of buildings & roads.

Cour	Course Outcome							
After	completion of syllabus student able to							
1	Prepare the preliminary estimate for administrative approval & technical sanction for a civil engineering project.							
2	Write the specification of the works to be undertaken, prepare the tender documents, fill the contracts and make use of knowledge of different contract submission & opening in awarding the work to the contractor.							
3.	Use the concept of SD, EMD, MAS, Running Bill, Final Bill during the entire project							
4.	Use the technique of Rate analysis in estimating the exact cost of material & manpower and hence the entire project.							
5.	Estimate the bill of quantities using different techniques of preliminary & detailed estimation of buildings & roads & Arrive the exact value of the asset (movable & immovable) using different Valuation techniques							

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Subject Code &CO NO.												
1	2	2									1	3
2	1	2									2	
3									2		3	
4			2	3	2						2	
5	3	2									2	
6	3		2			2					2	
	•		1 Low		2 Me	dium		3 H	igh	•		•

Unit No.1 Introduction			
Details of Topic		otment of ours	Mapped with CO Number
	L	T/A	СО
Introduction : Importance and purpose of the subject, Units of measurement as per I.S.1200. Items of work and Description of items of work,,	01		1
Administrative approvals, technical sanction, preliminary estimates. objectives, and its methods	02		1
Study of Earthwork estimates in road, hill roads and canals, methods of consumptions of earthwork.	01		
Detailed estimates , objects, importance, accuracy. Methods of detailed estimates, Detailed estimates of load bearing and framed structures.	04		
	08		
Unit No.2 Calculation of steel , Tender and contracts			
Details of Topic		otment of ours	Mapped with CO Number
	L	T/A	СО
Calculation of reinforcing steel with Bar bending Schedule.	03		
Tenders and Contracts:			
Tenders and Contracts: Method of carrying out works, tender notice, acceptance of tender, essentials of contract, type of contracts, contract documents, land acquisition act, Legal aspects of various contract provisions, Arbitration.	03		2
Method of carrying out works, tender notice, acceptance of tender, essentials of contract, type of contracts, contract documents, land acquisition act, Legal aspects of various contract provisions,			2
Method of carrying out works, tender notice, acceptance of tender, essentials of contract, type of contracts, contract documents, land acquisition act, Legal aspects of various contract provisions, Arbitration.			2

Unit No.3 Specifications:	-		
Details of Topic		otment of ours	Mapped with CO Number
	L	T/A	СО
Specifications : IS 1200 Introduction, Purpose and principles of specifications writing, Types of specifications, writing and developing	02		
Detailed specifications of Important items of building and road work.	03		
Classification of cost, direct and indirect charges, distribution of overheads, M.A.S Account, issue rates and stores account.	02		3
	07		
Unit No.4 Rate Analysis		I	I
Details of Topic	Allotment of Hours		Mapped with CO Number
	L	T/A	СО
Introduction, Purpose and principles of CSR, Factors affecting analysis of rates, labour guidelines from National Building Organization, Task work.	04		4
Market rates of materials and labour, Rate analysis of major items of work	03		4
	07		
Unit No.5 Valuation			
Details of Topic		otment of ours	Mapped with CO Number
	L	T/A	СО
Purpose of valuation, Factors affecting property price and cost, Types of Value.	03		5
Real Estate, Tenure of land, Free hold and lease hold, sinking fund, Depreciation, and its methods, Capitalised value, Methods of valuation, Net & Gross income, Rent fixation.	04		5
	07		

Curtes G. Done.

Aller (Dr. A.N. Dashade) Bos Member

- 20 (Dr. Avinash N Shrikhande,) BOS (Gvil Eugg) Chairman

ESTIMATING AND COSTING

BTCVE601P

Evaluation Scheme: (25-Internal/25-External)

(P-2 Hrs/Week); Total Credits-01

PRACTICAL – Minimum 8 practical assignments based on

- 1. Preliminary estimate using Plinth area method.
- 2. Detailed estimate of Load bearing structure
- 3. Detailed estimate of Frame structure.
- 4. Calculation of steel with Bar bending Schedule.
- 5. Detailed estimate of earthwork of road for Approximate 1km length.
- 6. Draft Detailed specification for 8 major items.
- 7. Collection of four different types of Tender
- 8. Calculation of annual and total Depreciation and book value of the end of each year.
- 9. Fixation of standard rent of property.
- 10. Analysis the unit rate of 8 major items of work contained.
- 11. Market survey for material and labour rates for various items.
- 12. Detailed planning and estimate of plumbing work.

Note: Collection of different bank rates of nearby location, Comparative study of different

units eg- Brass, foot, meter, cm, cum etc is compulsory.

	References								
Applicable	Name of Book	Name of Author	Name of Publisher	Edition		Category			
for Unit No.					Text Book	Research paper	Reference book		
1 to 5	Estimating and Costing	by Dutta							
1 to 5	Estimating and Costing	by Chakraborty							
5	Valuation	by Roshan Namavati							
5	Philosophy of Valuation	S. S. Rathore.							

	List of Code/Handbook								
Applicable for Unit No.	Title of Code	Type of code	Year of Publication						
1 to 5	Handbook for quick cost estimates. By Ball, J R								
4	IS 14835 (2000): Guidelines for Estimating Unit Rate of Items								

Currer G. Storne

Addriel Or. A.N. Dashade) BOS Member

(Dr. Avinash N Shrikhande,) BOS (Gvit Engre) chairman

Sem:VI	Total Hours Distribution per week							
Total Credit: 03	Lecture (L): 02 Hrs.	Tutorial/Activity	(T/A):01Hrs.	Practica	ıl (P): 00 Hrs.			
Subject Code	BTCVE602T	Name of Subject: Construction Engineering and						
		Management						
Examination Scheme								
Interi	nal Marks:	University	Minimum P	assing	Examination			
		Marks:	Marks	:	Duration:			
30	Marks							
(15 Marks for se	essional examination)	70 Marks	45 Mar	ks	3 Hours			
(15 Marks fo	or Activity based)							

Course	Outcome
After co	mpletion of syllabus student able to
1	Get themselves acquainted with various economic and managerial aspects of construction industry
2	Understand the tools and techniques of economic analysis for improving their decision making skills
3	Analyze the structure of market and effects of inflation with special reference to construction industry.
4	Understand the importance of marketing management and its effect on construction industry.
5	Acquire financial acumen for construction business.

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
BECVE602T1			2	2		1					3	1
BECVE602T2			2	2		1					3	1
BECVE602T3			2	2		1					3	1
BECVE602T4			2	2		1					3	1
BECVE602T5			2	2		1					3	1

1 Low

3 High

SYLLABUS

2 Medium

Details of Topic		otment of ours	Mapped with CO Number
	L	T/A	СО
Importance of construction industry in economic development and	04	04	1
economic growth of India. Construction- akey industry of India, Law			
of Demand, Law of supply, Laws of returns to the scale, types of			
costs			
Unit No.2		1	
	Allo	otment	Mapped
Details of Topic	of		with CO
	Hours		Number
	L	T/A	СО
Factors of production with special reference to construction industry,			
Turnkeyconstructionprojects, Deprecation- its types and methods, The			
concept of business cycle, Affordable housing schemes by	04	04	2
Government of India			
Unit No.3			
	Allo	otment	Mapped
Details of Topic		of	with CO
	Н	ours	Number
	L	T/A	СО
Types of market structure, Monopoly, oligopoly and	04	0.4	2
monopolisticcompetition, Recession, inflation and Deflation, Direct	04	04	3

and indirect taxes			
Unit No.4			
	Allo	tment	Mapped
Details of Topic		of	with CO
	H	ours	Number
	L	T/A	СО
Meaning of Marketing managements, concepts of Marketing,			
Marketing Mix, Administrative and cost plus pricing, Channels of	03	03	4
distribution, Advertising and sales promotion			
Unit No.5			
	Allo	tment	Mapped
Details of Topic		of	with CO
	Н	ours	Number
	L	T/A	СО
Meaning, Nature and scope of Financial management, Sources of			
Finance, profit and loss account, Balance sheet, merger and	04	04	5
acquisitions of business, Concept of stock market			

	References										
Applicable for	Name of Book	Name of	Name of	Edition	Category		7				
Unit No.		Author	Publisher		Text	Research	Reference				
					Book	paper	book				
	Modern Economics	H.L. Ahuja					YES				
	Monetary	M.L. Seth					YES				
	Economics										
	Industrial	I.K. Chopde,					YES				
I.II,III,IV,V	Management	A.M. Sheikh									
	Business	S.A. Sherlekar					YES				
	Organization and										
	Management										
	Modern Economic	K.K. Dewett					YES				
	Theory										

Curles G. Ronde

Appreler Or. A.N. Dashade)

Ros Member

(Dr. Avinash N Shrikhande,) BOS (Gvil Eugg) Chairman

RASHTRASANT TUKADOJI MAHARAJ NAGPUR UNIVERSITY, NAGPUR FACULTY OF SCIENCE & TECHNOLOGY

B. TECH CIVIL ENGINEERING (CHOICE BASED CREDIT SYSTEM)

Sem: VI	Total Hours Distribution per week							
Total Credit: 03	Lecture (L): 3 Hrs	Lecture (L): 3 Hrs Tutorial/Activity (T/A): 0 Hrs. Practical (P): 0 Hrs						
Subject Code	BTCVE603T Name of Subject: Water Resource Engineering							
Examination Scheme								
Inte	Internal Marks:			Minimum		Examination		
			Marks:	Passing	Marks:	Duration:		
	30 Marks							
(15 Marks for sessional examination) (15 Marks for Activity based)			70 Marks 45 Ma		arks	3 Hours		

Course	Objective
1	To describe occurrence, movement and distribution of water and to estimate water abstractions, runoff and hydrographs
2	To study the concepts of irrigation and different systems and methods of irrigation and to estimate the quantity of water required by crops.
3	To determine storage capacity of reservoir and to analyse and design earth dams
4	To analyse and design gravity dams and to study types of spillways and energy dissipators
5	To design unlined and lined channels and study the concept of other irrigation structures

Course	Course Outcome After completion of syllabus student able to								
After co									
1	Understand occurrence, movement and distribution of water and estimate water abstractions,								
	runoff and hydrographs								
2	Illustrate different systems and methods of irrigation and estimate the quantity of water								
	required by crops and estimate the quantity of water required by crops.								
3	Estimate reservoir capacity and analyse and design earth dams								
4	Design and analyse gravity dams and illustrate types of Spillways and energy dissipators								
5	Design unlined and lined channels and illustrate concepts of other irrigation structures								

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
BECVE603T CO1	1	3	3	2								2
BECVE603T CO2		3	2									2
BECVE603T CO3	1	3	3	2								2
BECVE603T CO4	1	3	3	2								2
BECVE603T CO5		3	3	2								2
	1	1 Lo	W	2 Medium		1	3	High	1			I

SYLLABUS

Unit No.1 Hydrology			
	Allo	otment	Mapped
Details of Topic		of	with CO
		ours	Number
	L	T/A	CO
Hydrologic cycle, Water availability in India, Water balances, National	01		1
Water Policy			
Precipitation: Types, Measurement, Data analysis and presentation,	02		1
Probable Maximum Precipitation			
Evaporation and its measurement, Evapotranspiration and its	02		1
measurement, Penman Monteith method, Infiltration: Horton's			
equation and Green Ampt method.			
Concept of basin as a unit for development, Runoff: drainage basin	02		1
characteristics, Estimation of runoff, Streamflow measurement			
Concepts of unit hydrograph, S-curve hydrograph, Synthetic	02		1
hydrograph, Stage discharge curve			
	09		
Unit No.2 Water application and Irrigation methods			
	Allo	otment	Mapped
Details of Topic:		of	with CO
~	Н	ours	Number
	L	T/A	СО
Systems of Irrigation: Lift irrigation, Tank irrigation, Well irrigation,	02		2

Irrigation methods: Surface and Sub-Surface Irrigation, Sprinkler and	02		2
Drip Irrigation			
Duty, Delta and Base period, Computation of duty and frequency of	02		2
Irrigation			
Soil Moisture and Consumptive use, Irrigation water quality, Crop	02		2
rotation and Irrigation assessment			
	08		
Unit No.3 Reservoir and Earthen dam			
	Allo	otment	Mapped
Details of Topic:		of	with CO
	Н	ours	Number
	L	T/A	СО
Reservoir: Types, Investigations, Site selection, Zones of storage,	01		3
Safe yield, Reservoir storage capacity, Reservoir sedimentation and	02		3
control.			
Dams: Types of dams, Earth and rockfill dams, typical sections of earth	02		3
and rockfill dams			
Analysis and design of earthen embankments, seepage control in earth	03		3
dams			
	08		
Unit No.4 Gravity Dams and spillways	-	1	I
	Allo	otment	Mapped
Details of Topic:		of	with CO
	Н	ours	Number
	L	T/A	CO
Gravity dams, overflow and non-overflow sections, Forces acting on	02		4
Gravity dams			
analysis and design of gravity dams, Foundation treatment in concrete	03		4
dams, joints, water seals, galleries in concrete dams			
Types of spillways, design of Ogee spillway,	01		4
Types of gates in spillways and types of energy dissipation below	01		4
spillways			
	07		

Unit No.5 (Canals and hydraulic structures)			
		otment	Mapped
Details of Topic:	of Hours		with CO Number
	L	T/A	СО
Alignment of canals, canal capacity, losses, FSL of canal, Kennedy's	03		5
silt theory, Lacey's regime theory, use of Garrets diagrams and Lacey's			
Regime diagrams			
Lining of irrigation channels, design of lined canal, balancing depth,	02		5
Cross section of an Irrigation channel			
Water logging: Causes, surface and sub-surface drains	01		5
Introduction: hydraulic structures, storage, diversion, conveyance and	01		5
distribution structures			
	07		

References

Applicable	Name of Book	Name of Author	Name of Publisher	Edition		Category	
for Unit					Text	Research	Reference
No.					Book	paper	book
1	A Textbook of	Dr. P. Jaya	University		Yes		
	Hydrology	Rami Reddy	Science Press				
1	Engineering	Subramanya,	Tata McGraw				Yes
	Hydrology	К.	Hill, New Delhi				
2 to 5	Irrigation Water	Modi, P.N.	Standard Book		Yes		
	Resources and		House, New				
	Water Power		Delhi				
	Engineering,						
2 to 5	Irrigation	G. S. Birdie	Dhanpat Rai				Yes
	Engineering	and R. C. Das	Publishing				
			Company pvt.				
			Ltd., New Delhi				
2 to 5	Irrigation	Garg Santosh	Khanna		Yes		
	Engineering and	Kumar	Publishers,				
	Hydraulic		New Delhi.				
	Structures						

Applicable	Website address
for Unit	
No.	
1	http://nptel.iitm.ac.in
2 to 5	http://www.uiowa.edu
2 to 5	http://www.ngwa.org
2 to 5	http://nptel.iitm.ac.in/video.php?courseId=1029&v=XmO2pltg7YBz /m3109.pdf
2 to 5	http://nptel.iitm.ac.in/video.php?courseId=1029&v=SO0suW7TLiCs
2 to 5	http://nptel.iitm.ac.in/courses/Webcourse
	contents/IIT%20Kharagpur/Water%20Resource%20Engg/pdf/m3102.pdf
2 to 5	http://nptel.iitm.ac.in/courses/Webcourse
	contents/IIT%20Kharagpur/Water%20Resource%20Engg/pdf/m3103.pdf
2 to 5	http://nptel.iitm.ac.in/courses/Webcourse
	contents/IIT%20Kharagpur/Water%20Resource%20Engg/pdf/m3105.pdf
2 to 5	http://nptel.iitm.ac.in/courses/Webcourse
	contents/IIT%20Kharagpur/Water%20Resource%20Engg/pdf/m310

Ser 406 (Dr. A.N. Dabhade) Bos Member

-(Dr. Avinash N Shrikhande,) BOS (Gvil Engg) Chairman

Sem: VI	Total Hours Distribution per week				
Total Credit:01	Practical (P): 2Hrs.				
Subject Code BTCVE606P Name of Subject: Computer Aided Civil Engineering					
	Drawing				
		Examination Scheme			
Internal	University Marks:	Minimum Passing			
Marks:		Marks:			
50 Marks	50 Marks	50 Marks			

List of Practical's- (Any Eight)

- 1. Introduction to Auto-CAD
- 2. Auto CAD Basics Drawing, Editing and Dimensioning
- Preparation of 2-D drawings using Auto CAD Plan, Elevation, section and layout of Building. Preparation of Submission drawing for the local sanctioning authority-Residential Building.
- Preparation of 2-D drawings using Auto CAD Plan, Elevation, section and layout of Building. Preparation of Submission drawing for the local sanctioning authority-Public Building.
- 5. Preparation of 2-D drawings using Auto CAD of reinforcement detailing of Civil Engineering Structures specially foundation, slab, beam and staircase.
- 6. To prepare submission drawing of Bridge.
- 7. To prepare submission drawing of Slab and culvert.
- 8. To prepare submission drawing of underground water reservoir
- 9. 3-D drawing of residential building by using Auto CAD
- 10. Creation of 3 D models of simple objects and obtaining 2-D Multiview drawings by using Auto CAD.

Center Gindes . Ser A.N. Dalhade (Dr. Avinash N Shrikhande,) BOS (Gvil Engg) chairman

Sem: VI	Т	Total Hours Distribution per week 3-0-0						
Total Credit:	Lecture (L): 03Hrs	Tutorial/Activity (T/A): 0 Hrs. Practical (P): 00 H						
Subject Code	BTCVE604T	Name of Subject: Prestressed Concrete (Elective-III)						
Examination Scheme								
Inter	nal Marks:	University	Minimun	n Examination				
		Marks:	Passing Mar	ks: Duration:				
30 Marks								
(15 Marks for sessional examination)		70 Marks	45 Marks	3 Hours				
(15 Marks for Activity based)								

Course	Course Objective						
1	To familiarize the students with concept of pre-stressed concrete.						
2	To impart knowledge to design pre-stressed concrete structures.						

Course	Course Outcome					
After co	mpletion of syllabus student able to					
1	Understand the behaviour of pre-stressed concrete.					
2	Design of the pre-stressed concrete structures.					
3	Understand the knowledge of basic theories and fundamental behaviour of prestress concrete.					
4	Perform the analysis and design of pre-stress elements.					
5	Apply the fundamental knowledge to the solution of practical problems.					

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Subject Code &CO NO.												
CO1	3	3	3	2	-	-	-	-	-	-	-	3
CO2	3	3	3	2	-	-	-	-	-	-	-	3
CO3	3	3	3	2	-	-	-	-	-	-	-	3
CO4	3	3	3	2	-	-	-	-	-	-	-	3
Avg CO	3	3	3	2	-	-	-	-	-	-	-	3
L		1 L	ow	2	Mediu	m		3 High			1	

		tment of ours	Mapped with CO Number
	L	T/A	СО
Unit No.1			
Partial pre-stressing, Analysis and design of End Blocks as per IS 1343	09		1
Method. (Only comparative study with the other methods is expected)			
Use of un-tensioned reinforcement. Types of pre-stressed concrete			
structures - Type - I, II, and III. Effect of Post-tensioning on axial			
Compression and tension members			
	09		
Unit No.2			
Design of pre-stressed concrete Rectangular beam and one way slab by	09		2
Limit state method, cable profile, Limiting zone of cable profile.			
Deflection of pre-stressed concrete beams (short-term, and long term)			
Shear and Torsional resistance of the pre-stressed concrete members,			
principal tension. Behavior of unbounded and bonded pre-stressed			
concrete beams			
	09		

Unit No.3		
Composite construction of pre-stressed concrete structures and in-situ	09	3
concrete, Differential shrinkage, deflection, flexural strength,		
serviceability (Limit state) of the composite sections.		
Introduction to application of pre-stressing to continuous beams,		
primary and secondary moment, Linear transformation and concordant		
cables		
	09	
TT .*/ NT. /		
Unit No.4		
Flexibility Influence coefficient, Analysis of single-storey, single-bay	05	4
fixed portal frame. Analysis and design of circular water tank, fixed,		
hinged, use of (IS-3370-2021)		
	05	
Unit No.5		
Design of pre-stressed concrete poles, Special problems in pre-stressed	04	5
concrete structures like corrosion, fatigue, dynamic behavior of pre-		
stressed concrete beams, behavior of pre-stressed concrete structures		
under fire.		
	04	

RECOMMENDED BOOKS:

- 1 Pre-stressed Concrete by Dr, N. Krishna Raju
- 2 Pre-stressed Concrete by Dr. TY Lin
- 3 Pre-stressed Concrete by N. Rajgopalan, Narosa Publishing House, Mumbai, Ed. II- 2007.
- 4 Pre-stressed Concrete Design & Construction- Leonhardt F. Ernst Wilhelm and Sohen, Publ

List of Code/Handbook					
Applicable for Unit No.	Title of Code	Type of code	Year of Publication		
All	IS 1343 Prestress Concrete-Code of Practice		2012		
Center	Stilling (Dr. Avinash N Shrikhande BOS (Giff Firm) Shairma	.)	And Well Or. A.N. Dashade Ros Member		

Bas Member

(Dr. Avinash N Shrikhande,) BOS (Gvil Engg) Chairman

Sem: VI th	Total Hours Distribution per week					
Total Credit: - 03	Lecture : 03 Hours		Tutorial//Activity: 0 Hrs	Practical(P): 0 Hrs		
Subject Code	BTCVE	Subject: - Soil Dynamics (Elective-III)			
	Exan	nination Schem	e			
Inter	nal Marks-	University Marks	Minimum Passing Marks:	Examination Duration:		
30 Marks (15 Marks for sessional Examination) (15 Marks for Activity based)		70 Marks	45 Marks	3Hours		

Course Objectives							
1	To enchance students knowledge in dynamic loading						
2	To enchance students knowledge in theory of vibrations.						
3	To know the dynamic soil Properties, to train the students in machine foundation design.						
4	To know the occurrence of liquefaction and the analyzing it.						
5	Learn procedure of analysis & Design of different types of Machine foundation.						

Course Outcomes						
After completion of syllabus, students would be able to						
1	Understand basics of soil dynamics, theory of vibration, propagation of body waves and surface waves through soil.					
2	Understand different laboratory and field tests to determine dynamic soil properties required for design purpose					
3	Understand liquefaction mechanism and evaluation of liquefaction potential studies by various tests					
4	Understand the general requirements of machine foundation, and criteria for its design.					
5	Understand analysis & design of different types of Machine foundation required in the field					

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2	1	1	2	2	1			2	2
CO2	3	2	1	2			2	1		1		2
CO3	2	1	2	2		2		2				1
CO4	3	2	1	1	1	2	2	1		2		2
CO5	3	2	2	2	2			1			2	2
Avg	2.8	1.8	1.6	1.6	1.33	2	2	1.2		1.5	2	1.8
		•	1	Low	2 Medium		3 H	ligh	•	•	•	

Details of Topic		otment of ours	Mapped with CO Numbe r	
	L	T/A	CO	
UNIT NO.1 Introduction to Dynamic loading				
Earthquake loading, machine vibrations, blast loading, background and lessons leant from damages in past earthquakes due to soil and ground failure,	04		1	
Effect of soil properties on seismic response of structures, seismic vaves and their characteristics.	03		1	
	07			
UNIT NO.2 Soil Dynamics and its applications				
Fundamentals of vibrations: single, two and multiple degree of				
freedom systems, vibration isolation, vibration absorbers, vibration measuring instruments.	03		2	
Wave propagation: elastic continuum medium, semi-infinite elastic continuum medium, soil behaviour under dynamic loading.	04		2	
	07			
UNIT NO.3 Dynamic elastic constant of soil				
Stress-strain behaviour of cyclically loaded soils, effect of strain level on the dynamic soil properties, measurement of seismic response of soil at low and high strain, using laboratory tests	03		3	
Cyclic triaxial, cyclic direct simple shear, resonant column, shaking table, centrifuge and using field tests - block vibration test, cross bore hole, their suitability and limitations, Interpretation of results, IS Codes	04		3	
	07			
UNIT NO.4 Liquefaction of soils				
Liquefaction mechanism, factors affecting liquefaction, liquefaction of cohesionless soils and sensitive clays, liquefaction susceptibility,	4		4	
Evaluation of liquefaction potential studies by dynamic tri-axial	3		4	

testing, oscillatory shear box, shake table and blast tests.		
	07	
UNITNO.5 Machine Foundation		
Introduction: Types of machines, Types of machine foundations, Modes of vibrations, General requirements of machine foundation, General criteria for design, permissible amplitude	02	5
Analysis & Design of Machine foundation: Elastic homogeneous half space and lumped parameter solutions, analysis and design of foundations for reciprocating and impact type machines, turbines, effect of machine foundation on adjoining structures.	03	5
vibration isolation& control: Force isolation & motion isolation, Methods of isolation in machine foundations Isolating materials and their properties Bearing capacity of foundations: Introduction to bearing capacity of dynamically loaded foundations	03	5
	08	

	References										
Applicable	Name of Book	Name of Author	Name of Publisher	Edition		Category	7				
for Unit No.					Text Book	Research paper	Reference book				
	Advanced Soil										
	Dynamics and	Bharat	PHI (1								
1,2,3,4,5	Earthquake	Bhushan	December		Yes						
	Engineering	Prasad	2010)								
	Fundamentals										
1,2,3,4,5	of Soil	Braja M. Das	Elsevier, 1983				Yes				
	Dynamics										

	List of Code/Handbook									
Applicable for Unit No.	Title of Code	Type of code	Year of Publication							
5	Indian Standard Code Of Practice For Design And Construction Of Machine Foundations Part 1 Foundation For Reciprocating Type Machines	Indian Standard	December 1982							
1,2,3,4	Handbook of Soil Mechanics: Soil Mechanics of Earthworks, Foundations and Highway Engineering v.3 Hardcover – Import, 1 September 1988.	Elsevier Science Ltd; Revised, Subsequent edition	1 September 1988							

Curter 4: Ronze

Agenula (Dr. A.N. Dashade) Bas Member

(Dr. Avinash N Shrikhande,) BOS (Gvil Eugg) chairman

-+

RASHTRASANT TUKADOJI MAHARAJ NAGPUR UNIVERSITY, NAGPUR FACULTY OF SCIENCE & TECHNOLOGY B. TECH CIVIL ENGINEERING (CHOICE BASED CREDIT SYSTEM)

Sem: VI	Total Hours Distribution per week								
Total Credit: 03	Lecture (L): 03 Hrs	Tutorial/Activity (T/A): 00Hrs.	Practical (P): 00Hrs.					
Subject Code	BTCVE604T	Name of Subject: Environment Management (Elective-III)							
	Examination Scheme								
Internal Marks:		University Marks:	Maximun Passing Mar						
(15 Marks for sea	30 Marks ssional examination) for Activity based)	70 Marks	45 Mark	s 3 Hours					

List of C	Course Objective
1	To develop, implement, monitor and maintain environmental strategies, policies, programmes and systems that promote sustainable development.
2	To identify and understand the major environmental management systems responsible for carrying out any sustainable development.
3	To oversee the environmental performance including compliance with environmental legislation across the organization.
4	To lead the implementation of environmental policies and practices and raise awareness, at all levels of an organization, about the emerging environmental issues.
5	To coordinate all aspects of pollution control, waste management, environmental health and conservation.

List of	List of Course Outcome							
After c	ompletion of syllabus student should be able to							
1	Identify the scientific and social aspects of environmental issues.							
2	Understand the procedure of environmental impact assessment.							
3	Identify and evaluate and the environmental risk assessment involved in the EMP.							
4	Understand the importance of the process of Environmental Audit and vital parameters associated with it.							
5	Understand the role of environmental management system in protecting the resources using environmental legislations.							

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	3	1	1	2	3	1	2	2	1	2
CO2	3	2	3	1	1	2	3	1	2	2	1	2
CO3	3	2	3	1	1	2	3	1	2	2	1	2
CO4	3	2	3	1	1	2	3	1	2	2	1	2
CO5	3	2	3	1	1	2	3	1	2	2	1	2

1 Low 2 Medium

3 High

SILLABUS			
Unit No.1 (Introduction)			
		otment of Hours	Mapped with CO Number
Details of Topic	L	T/A	СО
Introduction to Environmental Management: Objectives, Standards of living	2		1
Goals and components of Environmental Management, Socio-economic context.	2		1
Environmental Sustainability and sustainable development, issues and constraints	2		1
Environmental values and ethics	1		1
	7		
Unit No.2 (Environmental Impact Assess	ment)		
Details of Tonio		otment of Hours	Mapped with CO Number
Details of Topic	L	T/A	СО
Environmental Impact Assessment (EIA) – Definition, History and Objective	1		2
Role, Benefits and flaws of EIA in India,	1		2
EIA Procedures	1		2
Key elements of EIA: Screening, scoping identifying and evaluating impacts	2		2
Mitigations and issuing environmental statements.	1		2
Environmental Impact Statement	1		2
	7		
Unit No.3 (Environmental Risk Analys	sis)		l
Details of Tonia		otment of Hours	Mapped with CO Number
Details of Topic	L	T/A	СО
Environmental Risk Analysis: Fundamentals of hazards, exposure & risk assessment management.	2		3
Basic Steps in risk management- hazard identification, exposure assessment & risk characterization.	2		3
Stages in the prior Environmental Clearance (EC), Process for New Projects: Screening, scoping, public consultation	3		3

SYLLABUS

Critical environmental issues and formulation of strategies of	2		CO3
Environmental Management Plan (EMP)			
	9		
Unit No.4(Environmental Audit)			
Details of Tania		otment of Hours	Mapped with CO Number
Details of Topic	L	T/A	СО
Environmental Audit (EA)- Concept of EA, procedural aspects of conducting environmental audit,	2		4
Environmental Management System (EMS), Life Cycle Assessment and Management (LCA),	2		4
ISO environmental standards: Introduction to ISO 1400 series, International voluntary standards	1		4
Eco marks and eco labelling: Assuring the quality.	1		4
Post Project Monitoring	1		4
	7		
Unit No.5 (Environmental legislation	n)	I	
		otment of Hours	Mapped with CO Number
Details of Topic	L	T/A	СО
Environmental Policy, Law And Appraisals –various enactment and their provisions	2		5
Role of State & Central boards of pollution control	1		5
Cleaner Technology of production	1		5
Energy Impact Analysis: Energy sources, Importance of energy impact analysis	2		5
Resource Management: Mineral, Energy, Water, Renewable, Food, Land	2		5
and its depletion– causes & effects, Optimization of resource utilization.			

	References								
Applicable	Name of Book	Name of Author	Name of Publisher	Edition	Category		7		
for Unit No.					Text Book	Research paper	Reference book		
Unit I	An Introduction to Environmental Management	Anand Bal	Himalaya Publishing House						
Unit II,III,IV	Environmental Impact Assessment	John Rau & Wooten	Mc Graw Hill						
Unit II,III,IV	Environmental Impact Assessment	Larry Canter	Mc Graw Hill						
Unit II,III,IV	The New Environmental Age	R.K. Sapra, S. Bhardwaj	Ashish Pub. House, New Delhi						
Unit V	Environmental Law and Policy in india, Cases, Materials And Statutes	Rosencrannz, S. Divan, M.L. Nobal	Tripathi Pvt. Ltd. Bombay.						

Unit V	Environmental	Gupta, K.R.,	Atlantic		
	Legislation of	_	Publishers, 2006		
	India		,		

Eistes 4. Ronde Aller (Dr. A.N. Dashade) Bos Member ~~ (Dr. Avinash N Shrikhande,) BOS (Gvil Eugg) Chairman

RASHTRASANT TUKADOJI MAHARAJ NAGPUR UNIVERSITY, NAGPUR FACULTY OF SCIENCE & TECHNOLOGY B. TECH CIVIL ENGINEERING (CHOICE BASED CREDIT SYSTEM)

Sem: VI		Total Hours Distribution per week						
Total Credit: 3	Lecture (L):	3Hrs	Hrs Tutorial/Activity (T/A): 1 Hrs. Practical (P):					
Subject Code	BTCVE604T		Name of Sub	Name of Subject: Repairs & Rehabilitation of Civil				
			Engineering Structures (Elective- III)					
Examination Scheme								
Internal Ma	arks:	τ	University	Minimum Passi	ng	Examination		
			Marks:	Marks:		Duration:		
30 Marl	KS							
(15marks for sessional Examination)			70 Marks	Marks 45 Marks		3 Hours		
(15 Marks for Activity based)								

Course	Course Objective								
1	Familiarize Students with deterioration of concrete in structures								
2	Equip student with concepts of NDT and evaluation								
3	Understand failures and causes for failures in structures								
4	Familiarize different materials and techniques for repairs								
5	Understand procedure to carryout Physical evaluation of buildingsand prepare report								

Cours	Course Outcome								
After	completion of syllabus student able to								
1	Explain deterioration of concrete in structures								
2	Carryout analysis using NDT and evaluate structures								
3.	Assess failures and causes of failures in structures								
4.	Carryout Physical evaluation and submit report on condition of the structure								
5.	Carryout analysis of structures and take preventive action as per conditions & Requirement								

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Subject Code &CO NO.												
1	2						2					3
2	2	2	3			2					2	2
3	2	2					2		2		3	2
4	2				2	2	2				2	2
5	3	2	2	2			2		1	1	2	2
	1	- - -	1 Low		2 Me	dium	1	3 H	igh		1	

SYLLABUS

Unit No.1 Deterioration of concrete in structures				
Details of Topic		otment of ours	Mapped with CO Number	
	L	T/A	СО	
Physical processes of deterioration like Freezing and Thawing, Wetting and Drying,	02		1	
Abrasion, Erosion, Pitting, Chemical processes like Carbonation, Chloride ingress, Corrosion,	02		1	
Alkali aggregate reaction, Sulphate attack Acid attack, temperature and their causes, Mechanism, Effect, preventive measures	02		1	
Cracks: Cracks in concrete, type, pattern, quantification, measurement & preventive measures.	02		1	
	08			
Unit No.2 Non Destructive Testing				
Details of Topic	Н	otment of ours	Mapped with CO Number	
	L	T/A	CO	
Nondestructive test methods for concrete including Rebound hammer, Ultrasonic pulse velocity,	03		2	
Rebar locator, Corrosion meter, Penetration resistance and Pull out test, Core cutting-	02		2	
Corrosion: Methods for corrosion measurement and assessment including half-cell potential and resistivity, Mapping of data.	02		2	
	07			
		1		

Details of Topic	Allotment of Hours		Mapped with CO Number
	L	T/A	СО
Definition of building failure-types of failures- Causes of Failures- Faulty Design,	02		3
Accidental over Loading, Poor quality of material and Poor Construction practices-	02		3
Fire damage - Methodology for investigation of failures-diagnostic testing methods and equipments-repair of cracks in concrete	03		3
	07		
Unit No.4 Materials for repair and rehabilitation			I
Details of Topic		otment of ours	Mapped with CO Number
	L	T/A	СО
Admixtures- types of admixtures- purposes of using admixtures- chemical composition- Natural admixtures- Fibres- wraps- Glass and Carbon fibre wraps- Steel Plates- Concrete behavior under corrosion, disintegrated mechanisms- moisture effects and thermal effects –	04		4
Visual investigation- Acoustical emission methods- Corrosion activity measurement- chloride content – Depth of carbonation- Impact echo methods- Ultrasound pulse velocity methods- Pull out tests.	03		3
	07		
Unit No.5 Investigation of structures & Repair Techniques			
Details of Topic	Allotment of Hours		Mapped with CO Number CO
	L	T/A	0
Distress, observation and preliminary test methods. Case studies: related to rehabilitation of bridge piers, dams, canals, heritage structures, corrosion and erosion damaged structures.	03		3
Grouting, Jacketing, Shotcreting, externally bonded plates, Nailing, Underpinning and under water repair; Materials, Equipments, Precautions and Processes.	04		5
	07		

		Refe	erences				
Applicable	Name of	Name of Author	Name of	Edition	Category		
for Unit No.	Book		Publisher		Text Book	Research paper	Refer ence book
1 to 5	Maintenance & Repair of Civil Structures	B.L. Gupta & AmitGupta			yes		
1 to 5	Rehabilitation of Concrete Structures	B. Vidivelli	Standard Publishers		yes		
1 to 5	Concrete Bridge Practice Construction, Maintenance & Rehabilitation	V. K. Raina			yes		
1 to 5	Concrete Structures- protection Repair and Rehabilitation	R.Doodge Woodson	BH Publishers				
1 to 5	Repair and protection of concrete structures by	Noel P.Mailvaganam,	CRC Press,	1991		yes	
1 to 5	Concrete repair and maintenance Illustrated	Peter.H.Emmons,	Galgotia publications Pvt. Ltd.,	2001.			yes
1 to 5	Earthquake resistant design of structures	Pankaj Agarwal & Manish shrikande	PHI,	2006.	yes		

List of Code/Handbook									
Applicable for Unit No.	Title of Code	Type of code	Year of Publication						
1 to 5	Handbook on repair and rehabilitation of RCC buildings	CPWD, Government of India.							
1 to 5	Handbook on seismic retrofit of buildings A. Chakrabarti et.al., Narosa PublishingHouse, 2010.								

Custor G. Ronde

Addituder Or. A.N. Dashade) 1203 Member

(Dr. Avinash N Shrikhande,) BOS (Gvif Eugg) Chairman

RASHTRASANT TUKADOJI MAHARAJ NAGPUR UNIVERSITY, NAGPUR FACULTY OF SCIENCE & TECHNOLOGY B. TECH CIVIL ENGINEERING (CHOICE BASED CREDIT SYSTEM)

Sem: VI	Total Hours Distribution per week							
Total Credit: 03	Lecture (L): 3 Hrs	Tutorial/Activity (T/A): 0 Hrs. Practical (P): 0 Hrs.						
Subject Code	BTCVE604T	Name of Subject: Water Transmission and Distribution Systems (Elective-III)						
Examination Scheme								
Interna	al Marks:	University Marks:	Minimum P	assing	Examination			
			Marks	:	Duration:			
30 Marks								
[`]	sional Examination) r Activity based)	70 Marks	45 Mar	ks	3 Hours			

Course	Objective
1	To learn the concept of computation of optimal diameter of rising main based on the various cost elements involved in it
2	To estimate the storage capacity of a distribution reservoir and to discuss various components of distribution reservoir
3	To discuss various methods of analysis of a water distribution network
4	To study various criteria of planning of an optimal water distribution network
5	To know the methods of the optimal design of water distribution network and their suitability

Course	Course Outcome								
After co	mpletion of syllabus student able to								
1	Understanding the various head loss formula used for water distribution design and								
	also know the methodology of optimal diameter of pumping main								
2	Estimation of storage capacity of a distribution reservoir and also to understand the								
	utility of various appurtenance used in WDN								
3	Understand the concepts of various methods of analysis of WDN								
4	Understanding various techniques of the optimal planning of water distribution								
	network								
5	Implementation of various methods of optimal water distribution network design								

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
BECVE604T CO1	3	3	3	2	2	3						
BECVE604T CO2	3	3	3	2	2	2	1					
BECVE604T CO3	3	3	3	2	2	2	1					
BECVE604T CO4	3	3	3	2	2	2	1					
BECVE604T CO5	3	3	3	2	2	2	1					

1 Low 2 Medium

3 High

SYLLABUS

		otment of ours	Mapped with CO Number
	L	T/A	CO
	04		1
Introduction- General principle used in pipe line design, various			
components of water transmission and distribution systems, Head loss			
formula, minor losses, equivalent pipe concept			
Rising main - Basic requirements, Types, diameter computation by	04		1
considering various cost elements. Optimal diameter of rising main			
	08		
Unit No.2			
		otment of ours	Mapped with CO Number
	L	T/A	СО
Distribution reservoirs- impounding and service reservoirs, necessity,	03		2
various storages, location and height, various component parts, capacity computation.			
Design principle of water distribution system- Planning, design and analysis of WDN, component parts	01		2
Pipe appurtenances- Various valves and fittings, pumps, pressure release valve and check valves	03		2
	07		
Unit No.3	I	1	
	Allotment of Hours		Mapped with CO Number
	L	T/A	CO
Analysis of water distribution network- Parameter inter relationship,	08		3

formulation of equations, types of problem, Hardy cross method,			
Newton Raphson method, Linear theory method, Electrical analogy			
method, Multi reservoir system analysis			
	08		
Unit No.4			
		Allotment Mapp of with C Hours Numb	
	L	T/A	СО
Node Flow analysis- Node Head Analysis (NHA) and Node Flow	04		4
Analysis (NFA), Node classification, Node flow compatibility, NFA of			
serial network			
Planning of an optimal network-Branching of network, selection of	04		4
branches computation of first trial HGL values			
	08		
Unit No.5			
	Allo	otment	Mapped
		of	with CO
		ours T/A	Number CO
		I/A	
Design of optimal WDN- Various approaches, cost head loss ratio	8		5
criterion, Linear Programming technique, introduction to non linear			
programming			
	08		

			References						
Applicable	Name of Book	Name of	Name of Publisher	Edition		Category			
for Unit No.		Author			Text Book	Research paper	Reference book		
1 and 2	Analysis of	T.M.Walski	C.B.S.Publication	1984	Yes				
	Water								
	distribution								
	Systems								
3	Analysis of	Jepson R.W.	Ann Arbor	1997		Yes			
	Flow in pipe		Science,						
	network		Michigan USA						
3	Analysis of	Gupta	Narosha	2013	Yes				
	Flow in pipe	Rajesh	Publishing House						
	network	Bhave P.R.	New Delhi						
3	Analysis of	Dr.	Journal of	1981			Yes		
	Water	P.R.Bhave	IWWA Vol XIII						
	Distribution		No. 2						
	Network Part I								

	to Part III				
3	Node Flow	Dr.	Journal of	1981	Yes
	analysis of	P.R.Bhave	IWWA Vol XII		
	Serial water				
	distribution				
	System				
4 and 5	Non Computer	P.R. Bhave	Journal of	1978	Yes
	Optimisation		Environmental		
	of Single		Engg. Div. ASCE		
	source				
	network				

Custos 4: Donde.

400 miler (Dr. A.N. Dashade) Bas Member

(Dr. Avinash N Shrikhande,) BOS (Gvil Engg) chairman

RASHTRASANT TUKADOJI MAHARAJ NAGPUR UNIVERSITY, NAGPUR FACULTY OF SCIENCE & TECHNOLOGY B. TECH CIVIL ENGINEERING (CHOICE BASED CREDIT SYSTEM)

Sem: VI	Total Hours Distribution per week							
Total Credit: 3	Lecture (L): 3Hrs	Tutorial/Activity (T	C/A): 0hrs.	Practical (P): 0 Hrs.				
Subject Code	BTCVE604T	CVE604TName of Subject: Urban Transportation Planning (Elective III)						
Examination Scheme								
Inter	nal Marks:	University Marks:	Minim Passin Mark	ng Examination				
(15 Marks for s) Marks essional examination or Activity based)	a) 70 Marks	45 Ma	rks 3 Hours				

Course	Objective
1	Students should be able to explain and describe improving transport economic efficiency for transport providers and business user
2	Students should be able to explain, generate alternatives for improving transportation system
3	Students should be able to describe the future demand and selecting the best alternative after proper evaluation
4	Improve mobility levels for the urban poor through promotion of affordable urban transport plans, programmes and technologies
5	Increase the efficiency of existing transport operations through improved planning and management of all modes of transport

Course	Course Outcome								
After co	After completion of syllabus student able to								
1	Explain the characteristic of urban transportation, structure of urban transportation and classification of urban roads.								
2	Describe the objectives of transportation planning, data collection for planning and environmental impact analysis.								
3	Explain the process of travel demand forecasting & need for interation in different modes of transportation.								
4	Describe the use of intelligent Transport System and need to accommodate non- motorized transports.								

CO/PO	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO1 11	PO 12
Subject Code &CO												
CO1	3	3										
CO2	3	2										
CO3	3	3	2									
CO4	3	3	1									
CO5	3	2	2	1								
	•	-	1 Low		2 Me	dium		3 H	igh			

SYLLABUS

Details of Topic	Allo	otment	Mapped
	Н	with CO Number	
	L	T/A	CO
Importance of urban area			1
Structure of urban area			1
Urban design	08		
Use of road space			
Classification of urban roads			
	08		
Unit No.2 Urban Transportation Characteristics			
	Allotment of Hours		Mapped with CO
Details of Topic			Number
	L	T/A	СО
Factors influencing transportation needs			2
Transportation demand			2
Type of trips	- 08		
Mode of travel, urban transportation scene in India	Vð		
Road congestion			2
Impact of transport on environment			2
	08		
Unit No.3 Transportation Planning Process			
Details of Topic	otment of ours	Mapped with CO Number	
Details of Topic	L	T/A	CO
Urban transportation planning objectives	L	1/1	3
Urban transportation system	- 08		

Urban transportation planning process			3
Data collection			3
Surveys for data collection			
Environmental impact analysis			3
	08		
Unit No.4 Travel Demand Forecasting			
Details of Topic		tment of ours	Mapped with CO Number
	L	T/A	CO
Trip generation and attraction analysis			
Trip distribution models	08		4
Model split analysis	Võ		
Route assignment analysis			
	08		
Unit No.5 Public Transportation, Innovations in Urban Transportati	ion		
Details of Topic	Allotment of Hours		Mapped with CO Number
	L	T/A	CO
Bus transport characteristics, bus route planning, performance indicator			5
Types of rail transit, rail transit system development in Indian cities,			
Integrated Transport System, Modes of Integrated transport systems			
Need for innovative approaches	08		
Track guided bus			5
BRT, GIS, ITS			5
Functional areas of ITS			5

			References						
Applicable	Name of	Name of	Name of		Category				
for Unit No.	Book	Author	Edition	Edition	Text Book	Research paper	Reference book		
I,II,III, IV&V	Traffic Engineering and Transport Planning	L R Kadiyali	Khanna	Ι	~	-			
I,II,III, IV&V	Urban Transportation	D. J. Victor & S. Ponnuswamy	Tata McGraw - Hill	Ι	~	-			
ш	Transport Planning and Traffic engineering	C A O' Flaherty	Butter Worth- Heinemann	Ι		-	~		
I,II,III,	Urban	P. Anbalagan	Bookwell	Ι		-	\checkmark		

IV&V	Development		Publications			
	and					
	Sustainable					
	Transport					
T II III	Urban	Michael	McGraw -			
I,II,III, IV&V	Transporation	Meyer &	Hill	II	-	\checkmark
1 v & v	Planning	Eric Miller	11111			

Custor 4: Rende

Agonier Or. A.N. Dashade) Bas Member

(Dr. Avinash N Shrikhande,) BOS (Gvil Engg) chairman